分析 在平面ABCD內(nèi),過(guò)A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A為坐標(biāo)原點(diǎn),分別以Ax、AD、AA1所在直線為x、y、z軸建立空間直角坐標(biāo)系.結(jié)合已知求出A,B,C,D,A1,C1 的坐標(biāo),進(jìn)一步求出$\overrightarrow{{A}_{1}B}$,$\overrightarrow{A{C}_{1}}$,$\overrightarrow{DB}$,$\overrightarrow{D{A}_{1}}$的坐標(biāo).
(1)直接利用兩法向量所成角的余弦值可得異面直線A1B與AC1所成角的余弦值;
(2)求出平面BA1D與平面A1AD的一個(gè)法向量,再由兩法向量所成角的余弦值求得二面角B-A1D-A的余弦值,進(jìn)一步得到正弦值.
解答 解:在平面ABCD內(nèi),過(guò)A作Ax⊥AD,
∵AA1⊥平面ABCD,AD、Ax?平面ABCD,
∴AA1⊥Ax,AA1⊥AD,
以A為坐標(biāo)原點(diǎn),分別以Ax、AD、AA1所在直線為x、y、z軸建立空間直角坐標(biāo)系.
∵AB=AD=2,AA1=$\sqrt{3}$,∠BAD=120°,
∴A(0,0,0),B($\sqrt{3},-1,0$),C($\sqrt{3}$,1,0),
D(0,2,0),
A1(0,0,$\sqrt{3}$),C1($\sqrt{3},1,\sqrt{3}$).
$\overrightarrow{{A}_{1}B}$=($\sqrt{3},-1,-\sqrt{3}$),$\overrightarrow{A{C}_{1}}$=($\sqrt{3},1,\sqrt{3}$),$\overrightarrow{DB}=(\sqrt{3},-3,0)$,$\overrightarrow{D{A}_{1}}=(0,-2,\sqrt{3})$.
(1)∵cos<$\overrightarrow{{A}_{1}B},\overrightarrow{A{C}_{1}}$>=$\frac{\overrightarrow{{A}_{1}B}•\overrightarrow{A{C}_{1}}}{|\overrightarrow{{A}_{1}B}||\overrightarrow{A{C}_{1}}|}$=$\frac{-1}{\sqrt{7}×\sqrt{7}}=-\frac{1}{7}$.
∴異面直線A1B與AC1所成角的余弦值為$\frac{1}{7}$;
(2)設(shè)平面BA1D的一個(gè)法向量為$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=0}\\{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\sqrt{3}x-3y=0}\\{-2y+\sqrt{3}z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}=(\sqrt{3},1,\frac{2\sqrt{3}}{3})$;
取平面A1AD的一個(gè)法向量為$\overrightarrow{m}=(1,0,0)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{1×\sqrt{3+1+\frac{4}{3}}}=\frac{3}{4}$.
∴二面角B-A1D-A的余弦值為$\frac{3}{4}$,則二面角B-A1D-A的正弦值為$\sqrt{1-(\frac{3}{4})^{2}}=\frac{\sqrt{7}}{4}$.
點(diǎn)評(píng) 本題考查異面直線所成的角與二面角,訓(xùn)練了利用空間向量求空間角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p2,p3 | B. | p1,p2 | C. | p2,p4 | D. | p3,p4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 12 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com