13.下面四個推理中,屬于演繹推理的是(  )
A.觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43
B.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)
C.在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個正四面體的棱長比為1:2,則它們的體積之比為1:8
D.已知堿金屬都能與水發(fā)生還原反應(yīng),鈉為堿金屬,所以鈉能與水發(fā)生反應(yīng)

分析 分別判斷各選項,即可得出結(jié)論.

解答 解:選項A、B都是歸納推理,選項C為類比推理,選項D為演繹推理.
故選D.

點評 本題考查的是演繹推理的定義,判斷一個推理過程是否是演繹推理關(guān)鍵是看他是否符合演繹推理的定義,能否從推理過程中找出“三段論”的三個組成部分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,某公園摩天輪的半徑為40m,點O距地面的高度為50m,摩天輪做勻速轉(zhuǎn)動,每3min轉(zhuǎn)一圈,摩天輪上的點P的起始位置在最低點處.
(Ⅰ)已知在時刻t(min)時點P距離地面的高度f(t)=Asin(ωt+φ)+h,求2018min時點P距離地面的高度;
(Ⅱ)當(dāng)離地面50+20$\sqrt{3}$m以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,a2=2,an+2-an=1+(-1)n(n∈N*),則S100=2600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=lnx+$\frac{1}{2}$x2+ax(a∈R),g(x)=ex+$\frac{3}{2}$x2
(1)討論f(x)的極值點的個數(shù);
(2)若對于?x>0,總有f(x)≤g(x),求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i,(a1,b1,a2,b2都是實數(shù)且z1≠0,z2≠0),對應(yīng)的向量在同一直線上的充要條件是(  )
A.$\frac{b_1}{a_1}•\frac{b_2}{a_2}=-1$B.a1a2+b1b2=0
C.$\frac{b_1}{a_1}=\frac{b_2}{a_2}$D.a1b2=a2b1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$y=sin\frac{x}{2}+\sqrt{3}cos\frac{x}{2},x∈R$.的最大值為( 。
A.1+$\sqrt{3}$B.2C.1D.$\sqrt{3}+\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知an=$\frac{n-\sqrt{2017}}{n-\sqrt{2016}}$  ( n∈N*),則在數(shù)列{an}的前100項中最小項和最大項分別是( 。
A.a1,a100B.a100,a44C.a45,a44D.a44,a45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC.若B=90°,且$a=\sqrt{3}$,則△ABC的面積為( 。
A.1B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案