8.已知tan($\frac{π}{4}$+θ)=3,求:
(1)tanθ的值;
(2)sin2θ-2cos2θ的值.

分析 (1)直接利用兩角和的正切公式,求得tanθ的值.
(2)利用同角三角函數(shù)的基本關(guān)系,化簡所給的式子,再把tanθ的值代入運(yùn)算,可得結(jié)果.

解答 解:(1)∵tan($\frac{π}{4}$+θ)=$\frac{1+tanθ}{1-tanθ}$=3,∴tanθ=$\frac{1}{2}$.
(2)sin2θ-2cos2θ=$\frac{2sinθcosθ-{2cos}^{2}θ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ-2}{{tan}^{2}θ+1}$=$\frac{1-2}{\frac{1}{4}+1}$=-$\frac{4}{5}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的奇函數(shù)f(x),當(dāng)x<0時,f(x)=2x-3.若f(a)=7,實數(shù)a的值是2$\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x2+(2a-1)x+1,若對區(qū)間(2,+∞)內(nèi)的任意兩個不等實數(shù)x1,x2都有$\frac{f({x}_{1}-1)-f({x}_{2}-1)}{{x}_{1}-{x}_{2}}$>0,則實數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{1}{2}$]B.[-$\frac{5}{2}$,+∞)C.[-$\frac{1}{2}$,+∞)D.(-∞,$-\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知X~N(5,1),若P(5<X≤6)=0.3413,P(3<X≤7)=0.9544,則P(6<X≤7)=( 。
A.0.3413B.0.4772C.0.8185D.0.1359

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,則cos(x-y)=$\frac{59}{72}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ax-1-2(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx-ny-1=0上,其中m>0,n>0,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為( 。
A.4B.5C.7D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校高一(1)班有男同學(xué)45名,女同學(xué)15名,老師按照分層抽樣的方法抽取4人組建了一個課外興趣小組.
( I)求課外興趣小組中男、女同學(xué)的人數(shù);
( II)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是從小組里選出一名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選出一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
( III)在( II)的條件下,第一次做實驗的同學(xué)A得到的實驗數(shù)據(jù)為38,40,41,42,44,第二次做實驗的同學(xué)B得到的實驗數(shù)據(jù)為39,40,40,42,44,請問哪位同學(xué)的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知MOD函數(shù)是一個求余函數(shù),MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2,如圖是某個算法的程序框圖,若輸入m的值為6,則輸出i的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.執(zhí)行程序框圖,如果輸入x=9時,輸出y=$\frac{29}{9}$,則整數(shù)a值為1.

查看答案和解析>>

同步練習(xí)冊答案