18.已知定義在R上的奇函數(shù)f(x),當(dāng)x<0時(shí),f(x)=2x-3.若f(a)=7,實(shí)數(shù)a的值是2$\end{array}$.

分析 先求出x>0時(shí)的解析式,再利用條件,即可求出a的值.

解答 解:設(shè)x>0,則-x<0,∴f(x)=-f(-x)=-(-2x-3)=2x+3,
∴a<0,2a-3=7,a=5(舍去);a>0,2a+3=7,∴a=2.
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,考查學(xué)生的計(jì)算能力,確定函數(shù)的解析式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若復(fù)數(shù)(1-i)(a+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)a的取值范圍為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在一次抽樣調(diào)査中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量y關(guān)于x的回歸方程模型,其對(duì)應(yīng)的數(shù)值如表
x234567
y3.002.482.081.861.481.10
(Ⅰ)請(qǐng)用相關(guān)系數(shù)r加以說明y與x之間存在線性相關(guān)關(guān)系(當(dāng)|r|>0.81時(shí),說明y與x之間具有線性相關(guān)關(guān)系);
(Ⅱ)根據(jù)(I )的判斷結(jié)果,建立y關(guān)于x的回歸方程并預(yù)測(cè)當(dāng)x=9時(shí),對(duì)應(yīng)的y值為多少(b精確到0.01)
附參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估計(jì)公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,相關(guān)系數(shù)r公式為:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
參考數(shù)據(jù):$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知一個(gè)棱長(zhǎng)為2的正方體,被一個(gè)平面截后所得幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{14}{3}$B.$\frac{17}{3}$C.$\frac{20}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的導(dǎo)數(shù).
(])y=$\frac{{x}^{3}-1}{{x}^{2}+1}$;
(2)y=x2+sin$\frac{x}{2}$cos$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知側(cè)棱長(zhǎng)為2的正三棱錐S-ABC如圖所示,其側(cè)面是頂角為20°的等腰三角形,一只螞蟻從點(diǎn)A出發(fā),圍繞棱錐側(cè)面爬行一周后又回到點(diǎn)A,則螞蟻爬行的最短路程為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知在△ABC中,三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且$C=\frac{π}{3}$.
(Ⅰ)若c2=4a2-ab,求$\frac{sinB}{sinA}$;
(Ⅱ)求sinA•sinB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,用35個(gè)單位正方形拼成一個(gè)矩形,點(diǎn)P1、P2、P3、P4以及四個(gè)標(biāo)記為“▲”的點(diǎn)在正方形的頂點(diǎn)處,設(shè)集合Ω={P1,P2,P3,P4},點(diǎn)P∈Ω,過P作直線lP,使得不在lP上的“▲”的點(diǎn)分布在lP的兩側(cè).用D1(lP)和D2(lP)分別表示lP一側(cè)和另一側(cè)的“▲”的點(diǎn)到lP的距離之和.若過P的直線lP中有且只有一條滿足D1(lP)=D2(lP),則Ω中所有這樣的P為P1、P3、P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知tan($\frac{π}{4}$+θ)=3,求:
(1)tanθ的值;
(2)sin2θ-2cos2θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案