A. | $\frac{16π}{3}$ | B. | $\frac{40π}{3}$ | C. | $\frac{64π}{3}$ | D. | $\frac{80π}{3}$ |
分析 根據(jù)題意作出圖形,欲求球O的表面積,只須求球的半徑r.利用截面圓的性質(zhì)即可求出OO1,進而求出底面ABC上的高PD,即可計算出三棱錐的體積,從而建立關(guān)于r的方程,即可求出r,從而解決問題.
解答 解:根據(jù)題意作出圖形
設(shè)球心為O,球的半徑r.過ABC三點的小圓的圓心為O1,
則OO1⊥平面ABC,延長CO1交球于點D,則PD⊥平面ABC.
∵CO1=$\frac{4\sqrt{3}}{3}$,
∴OO1=$\sqrt{{r}^{2}-\frac{16}{3}}$,
∴高PD=2OO1=2$\sqrt{{r}^{2}-\frac{16}{3}}$,
∵△ABC是邊長為4正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}×{4}^{2}$=4$\sqrt{3}$
∴V三棱錐P-ABC=$\frac{1}{3}$×4$\sqrt{3}$×2$\sqrt{{r}^{2}-\frac{16}{3}}$=$\frac{16}{3}$
∴r2=$\frac{20}{3}$.
則球O的表面積為4πr2=$\frac{80π}{3}$
故選:D.
點評 本題考查棱錐的體積,考查球內(nèi)接多面體,解題的關(guān)鍵是確定點P到面ABC的距離.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 18 | 13 | 10 | -1 |
y | 24 | 34 | 38 | 64 |
A. | 65度 | B. | 68度 | C. | 70度 | D. | 72度 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com