17.已知三棱錐P-ABC的四個頂點均在某球面上,PC為該球的直徑,△ABC是邊長為4的等邊三角形,三棱椎P-ABC的體積為$\frac{16}{3}$,則該三棱錐的外接球的表面積為( 。
A.$\frac{16π}{3}$B.$\frac{40π}{3}$C.$\frac{64π}{3}$D.$\frac{80π}{3}$

分析 根據(jù)題意作出圖形,欲求球O的表面積,只須求球的半徑r.利用截面圓的性質(zhì)即可求出OO1,進而求出底面ABC上的高PD,即可計算出三棱錐的體積,從而建立關(guān)于r的方程,即可求出r,從而解決問題.

解答 解:根據(jù)題意作出圖形
設(shè)球心為O,球的半徑r.過ABC三點的小圓的圓心為O1,
則OO1⊥平面ABC,延長CO1交球于點D,則PD⊥平面ABC.
∵CO1=$\frac{4\sqrt{3}}{3}$,
∴OO1=$\sqrt{{r}^{2}-\frac{16}{3}}$,
∴高PD=2OO1=2$\sqrt{{r}^{2}-\frac{16}{3}}$,
∵△ABC是邊長為4正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}×{4}^{2}$=4$\sqrt{3}$
∴V三棱錐P-ABC=$\frac{1}{3}$×4$\sqrt{3}$×2$\sqrt{{r}^{2}-\frac{16}{3}}$=$\frac{16}{3}$
∴r2=$\frac{20}{3}$.
則球O的表面積為4πr2=$\frac{80π}{3}$
故選:D.

點評 本題考查棱錐的體積,考查球內(nèi)接多面體,解題的關(guān)鍵是確定點P到面ABC的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+2}$.
(1)若a=4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若x1、x2∈R+,且x1≤x2,求證:(lnx1-lnx2)(x1+2x2)≤3(x1-x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=1,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=x2-mcosx+m2+3m-8有唯一零點,則滿足條件的實數(shù)m組成的集合為{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標系xOy中,直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),與曲線C:$\left\{\begin{array}{l}{x=4{k}^{2}}\\{y=4k}\end{array}\right.$(k為參數(shù))交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在區(qū)間[-1,5]上隨機取一個數(shù)x,若x滿足|x|≤m的概率為$\frac{1}{2}$,則實數(shù)m為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax+lnx,其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(1)當a=-1時,求f(x)的最大值;
(2)設(shè)g(x)=xf(x),h(x)=2ax2-(2a-1)x+a-1,若x≥1時,g(x)≤h(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別于BC,AD交于點P,Q,若|DQ|=λ|DA|
(1)當λ=$\frac{1}{2}$時,求證:平面SAE⊥平面MNPQ
(2)是否存在實數(shù)λ,使得三棱錐Q-BCN的體積為$\frac{7}{16}$?若存在,求出實數(shù)λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某單位為制定節(jié)能減排的計劃,隨機統(tǒng)計了某4天的用電量y(單位:度)與當天氣溫x(單位:°C),并制作了對照表(如表),由表中數(shù)據(jù),得線性回歸方程$\hat y=-2x+a$,當某天的氣溫為-5°C時,預(yù)測當天的用電量約為(  )
x181310-1
y24343864
A.65度B.68度C.70度D.72度

查看答案和解析>>

同步練習(xí)冊答案