9.某人經(jīng)營一個抽獎游戲,顧客花費4元錢可購買一次游戲機(jī)會,毎次游戲,顧客從標(biāo)有1、2、3、4的4個紅球和標(biāo)有2、4的2個黑球共6個球中隨機(jī)摸出2個球,并根據(jù)模出的球的情況進(jìn)行兌獎,經(jīng)營者將顧客模出的球的情況分成以下類別:
A.兩球的顔色相同且號碼相鄰;
B.兩球的顏色相同,但號碼不相鄰;
C.兩球的顔色不同.但號碼相鄰;
D.兩球的號碼相同
E.其他情況
經(jīng)營者打算將以上五種類別中最不容易發(fā)生的一種類別對應(yīng)一等獎,最容易發(fā)生的一種類別對應(yīng)二等獎.其它類別對應(yīng)三等獎
(1)一、二等獎分別對應(yīng)哪一種類別(用宇母表示即可)
(2)若中一、二、三等獎分別獲得價值10元、4元、1元的獎品,某天所有顧客參加游戲的次數(shù)共計100次,試估計經(jīng)營者這一天的盈利.

分析 (1)分別用A1,A2,A3,A4,B1,B2表示標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的卡片,從6張卡片中任取2張,基本事件總數(shù)為15,分別求出五種類別的概率,由此得到一等獎對應(yīng)D類別,二等獎對應(yīng)B類別.
(2)先求出顧客獲一、二、三等獎的概率,由此能估計經(jīng)營者這一天的盈利.

解答 解:(1)分別用A1,A2,A3,A4,B1,B2表示標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的卡片,
從6張卡片中任取2張,基本事件總數(shù)n=${C}_{6}^{2}$=15,
其中,A類別包含:A1A2,A2A3,A3A4,
則P(A)=$\frac{3}{15}$,
B類別包含:A1A3,A1A4,A2A4,B1B3,則P(B)=$\frac{4}{15}$,
C類別包含:A2B1,A2B3,A4B3,則P(C)=$\frac{3}{15}$,
D類別包含:A1B1,A3B3,則P(D)=$\frac{2}{15}$,
∴P(E)=1-$\frac{3}{15}$-$\frac{4}{15}$-$\frac{3}{15}$-$\frac{2}{15}$=$\frac{3}{15}$,
∵最不容易發(fā)生的一種類別對應(yīng)中一等獎,最容易發(fā)生的一種類別對應(yīng)顧客中二等獎,其他類別對應(yīng)顧客中三等獎,
∴一等獎對應(yīng)D類別,二等獎對應(yīng)B類別.
(2)∵顧客獲一、二、三等獎的概率分別為$\frac{2}{15}$,$\frac{4}{15}$,$\frac{9}{15}$,
中一、二、三等獎,分別可以獲得價值9元、3元、1元的獎品,假設(shè)某天參與游戲的顧客為300人次,
∴估計經(jīng)營者這一天的盈利:y=100×4-100×$\frac{2}{15}$×10-100×$\frac{4}{15}$×4-100×$\frac{9}{15}$×1=100元

點評 本題考查概率的求法及應(yīng)用,考查經(jīng)營者這一天的盈利的估計值,是中檔題,解題時要認(rèn)真審題,注意對立事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{log}_{\frac{1}{2}}|x|,x<0}\end{array}\right.$,若方程f(x2-x)=a有六個根,則實數(shù)a的取值范圍是( 。
A.(1,2)B.(-1,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}等差數(shù)列,a10=10,其前10項和S10=60,則其公差d=( 。
A.-$\frac{2}{9}$B.$\frac{2}{9}$C.-$\frac{8}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}是等差數(shù)列a10=10,其前10項和S10=55,則其公差d=( 。
A.0B.1C.C-1D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{(x-2)(x+a)}{x}$為奇函數(shù),則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.盒中裝有形狀,大小完全相同的5個小球,其中紅色球3個,黃色球2個,若從中隨機(jī)取出2個球,則所取出的2個球顏色不同的概率等于( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)的圖象與x軸的兩個相鄰交點的距離等于$\frac{π}{2}$,若將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位得到函數(shù)y=g(x)的圖象,則y=g(x)是減函數(shù)的區(qū)間為( 。
A.(-$\frac{π}{3}$,0)B.(0,$\frac{π}{3}$)C.($\frac{π}{4}$,$\frac{π}{3}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)F是拋物線C1:y2=2px(p>0)的焦點,點A是拋物線與雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的一個公共點,且AF⊥x軸,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知sinθ=$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),則sin(π-θ)sin($\frac{π}{2}$-θ)的值為( 。
A.$\frac{{2\sqrt{2}}}{9}$B.$-\frac{{2\sqrt{2}}}{9}$C.$\frac{1}{9}$D.$-\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊答案