3.在數(shù)列{an}中,a2=$\frac{2}{3}$.
(1)若數(shù)列{an}滿足2an-an+1=0,求an;
(2)若a4=$\frac{4}{7}$,且數(shù)列{(2n-1)an+1}是等差數(shù)列,求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項和Tn

分析 (1)由a2=$\frac{2}{3}$,2an-an+1=0,求出數(shù)列{an}的首項,并得到數(shù)列{an}是以$\frac{1}{3}$為首項,以2為公比的等比數(shù)列,由等比數(shù)列的通項公式得答案;
(2)由已知結(jié)合數(shù)列{(2n-1)an+1}是等差數(shù)列求其公差,進一步得到數(shù)列{(2n-1)an+1}的通項公式,代入{$\frac{n}{{a}_{n}}$},再由等差數(shù)列的前n項和得答案.

解答 解:(1)由a2=$\frac{2}{3}$,2an-an+1=0,得${a}_{1}=\frac{1}{3}$,且$\frac{{a}_{n+1}}{{a}_{n}}=2$.
∴數(shù)列{an}是以$\frac{1}{3}$為首項,以2為公比的等比數(shù)列,
則${a}_{n}=\frac{1}{3}•{2}^{n-1}$;
(2)∵a2=$\frac{2}{3}$,a4=$\frac{4}{7}$,且數(shù)列{(2n-1)an+1}是等差數(shù)列,
則數(shù)列{(2n-1)an+1}的公差為d=$\frac{[(2×4-1)×\frac{4}{7}+1]-[(2×2-1)×\frac{2}{3}+1]}{4-2}$=1.
∴(2n-1)an+1=(2×2-1)×$\frac{2}{3}$+1+(n-2)×1=n+1,
∴${a}_{n}=\frac{n}{2n-1}$,
則$\frac{n}{{a}_{n}}$=$\frac{n}{\frac{n}{2n-1}}=2n-1$.
∴Tn=1+3+5+…+(2n-1)=$\frac{[1+(2n-1)]×n}{2}={n}^{2}$.

點評 本題考查數(shù)列遞推式,考查了等比數(shù)列通項公式的求法,考查等差數(shù)列的通項公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面積為2,若$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{EC}$,BE⊥DC,則$\overrightarrow{DA}$$•\overrightarrow{DC}$的值為( 。
A.-2B.-2$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)是奇函數(shù),且滿足f(2-x)=f(x)(x∈R),當(dāng)0<x≤1時,f(x)=lnx+2,則函數(shù)y=f(x)在(-2,4]上的零點個數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等比數(shù)列{an}的前n項和為Sn,且a1+a3=$\frac{5}{2}$,a2+a4=$\frac{5}{4}$,則S6=$\frac{63}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$a=\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,則二項式${(x+\frac{a}{{\sqrt{x}}})^6}$展開式中的常數(shù)項是240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{{(\frac{1}{2})}^{x},x<0}\end{array}\right.$,若方程f(f(x))-$\frac{3}{2}$=0在實數(shù)集范圍內(nèi)無解,則實數(shù)k的取值范圍是( 。
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.[0,+∞)D.(-$\frac{1}{2}$,-$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知公差不為零的等差數(shù)列{an}滿足a6=14,且a1,a3,a7為等比數(shù)列{bn}的前三項.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)cn=an-bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.智能手機功能強大,許多人喜歡用手機看電視、看電影.某同學(xué)在暑假期間開展社會實踐,對[25,55]歲的人群隨機抽取1000人調(diào)查是否喜歡用手機看電視、看電影,對喜歡用手機看電視、看電影的稱為“手機族”,得到如下各年齡段“手機族”人數(shù)頻率分布直方圖:
(1)請補全頻率分布直方圖;
(2)從[40,50)歲年齡段的“手機族”中采用分層抽樣法抽取10人參加戶外低碳體驗活動,并從中選取3人作為領(lǐng)隊,記選取的3名領(lǐng)隊中年齡在[40,45)歲的人數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)各項均為正數(shù)的數(shù)列{an}和{bn}滿足:對任意n∈N*,an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且a1=1,b1=2,a2=3.
(Ⅰ)證明數(shù)列{$\sqrt{_{n}}$}是等差數(shù)列;
(Ⅱ)求數(shù)列{$\frac{1}{{a}_{n}}$}前n項的和.

查看答案和解析>>

同步練習(xí)冊答案