20.已知$α∈(0,\frac{π}{6})$,$sin(α+\frac{π}{3})=\frac{12}{13}$,則$cos(\frac{π}{6}-α)$=( 。
A.$\frac{5}{12}$B.$\frac{12}{13}$C.$-\frac{5}{13}$D.$-\frac{12}{13}$

分析 根據(jù)誘導(dǎo)公式,則$cos(\frac{π}{6}-α)$=sin[$\frac{π}{2}-(\frac{π}{6}-α)$]即可得答案.

解答 解:由題意,利用誘導(dǎo)公式,可得$cos(\frac{π}{6}-α)$=sin[$\frac{π}{2}-(\frac{π}{6}-α)$]
∵$α∈(0,\frac{π}{6})$,
則sin[$\frac{π}{2}-(\frac{π}{6}-α)$]=sin($α+\frac{π}{3}$)=$\frac{12}{13}$.
故選B.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分情況的莖葉圖.從這個(gè)莖葉圖可以看出甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別是35,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“若a≥$\frac{1}{2}$,則?x≥0,都有f(x)≥0成立”的逆否命題是( 。
A.若?x≥0,有f(x)<0成立,則a<$\frac{1}{2}$B.若?x<0,f(x)≥0,則a<$\frac{1}{2}$
C.若?x≥0,都有f(x)<0成立,則a<$\frac{1}{2}$D.若?x<0,有f(x)<0成立,則a<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)P為△ABC所在平面內(nèi)一點(diǎn),當(dāng)$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PB}•\overrightarrow{PC}+\overrightarrow{PC}•\overrightarrow{PA}$取最小值時(shí),點(diǎn)P為△ABC的( 。
A.內(nèi)心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率$e=\frac{{\sqrt{2}}}{2}$,以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓與直線x+y-2=0相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)對(duì)于直線l:y=x+m和點(diǎn)Q(0,3),橢圓C上是否存在不同的兩點(diǎn)A與B關(guān)于直線l對(duì)稱,且3$\overrightarrow{QA}$•$\overrightarrow{QB}$=32,若存在實(shí)數(shù)m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,且過(guò)點(diǎn)$(1,\frac{3}{2})$.若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)$N(\frac{x_0}{a},\frac{y_0})$稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),試求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在數(shù)列{an}中,a1=1,a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{n}^{2}}$=an(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,若AB=2,PA=1,則此四棱錐的外接球的體積為( 。
A.36πB.16πC.$\frac{9π}{2}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.等比數(shù)列{an}中,a3-3a2=2,且5a4為12a3和2a5的等差中項(xiàng),則{an}的公比等于( 。
A.3B.2或3C.2D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案