11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cos A=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=6.
(1)求△ABC的面積;
(2)若b+c=7,求a的值.

分析 (1)先求出sin A=$\frac{4}{5}$,再由$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos A=$\frac{3}{5}$bc=6,求出bc=10,由此能求出△ABC的面積.
(2)由bc=10,b+c=7,利用余弦定理能求出a的值.

解答 解:(1)∵在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cos A=$\frac{3}{5}$,
∴A∈(0,π),sin A=$\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos A=$\frac{3}{5}$bc=6,
∴bc=10,
∴△ABC的面積為:$\frac{1}{2}$bcsin A=$\frac{1}{2}$×10×$\frac{4}{5}$=4.
(2)由(1)知bc=10,
b+c=7,
∴a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{(b+c)^{2}-2bc-2bccosA}$=$\sqrt{49-20-20×\frac{3}{5}}$=$\sqrt{17}$.

點(diǎn)評 本題考查三角形的面積的求法,考查三角形的邊長的求法,考查三角形面積、正弦定理、余弦定理、同角三角函數(shù)關(guān)系式、向量的數(shù)量積公式等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow$,則sin2θ的值為( 。
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α,β,γ均為銳角,且cos2α+cos2β+cos2γ=1,求證:$\frac{3π}{4}$<α+β+γ<π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$).若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求f(x)遞增區(qū)間;
(2)△ABC中,角A,B,C的對邊分別是a,b,c,且(2a-c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.已知a=3,b=5,c=7,則角C=$\frac{2π}{3}$,△ABC的面積S=$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列幾種推理過程是演繹推理的是( 。
A.比較5和ln3的大小
B.由平面三角形的性質(zhì),推測空間四面體的性質(zhì)
C.某高中高二年級有15個班級,1班有51人,2班有53人,3班52人,由此推測各班都超過50人
D.由股票趨勢圖預(yù)測股價(jià)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,且bcosC+ccosB=2acosB.
(1)求角B.
(2)若$b=\sqrt{13}$,△ABC的周長為$\sqrt{13}+7$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow$|=2.
(1)若<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,求$\overrightarrow{a}$•$\overrightarrow$和|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,求向量$\overrightarrow$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若|$\overrightarrow{a}$+$\overrightarrow$|=1,$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=1.

查看答案和解析>>

同步練習(xí)冊答案