6.將函數(shù)f(x)=cosx圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后向右平移$\frac{π}{6}$個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[{0,\frac{aπ}{9}}]$與[2aπ,4π]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.$[{\frac{13}{12},2})$B.$[{\frac{13}{12},\frac{3}{2}}]$C.$[{\frac{7}{6},2})$D.$[{\frac{7}{6},3}]$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用余弦函數(shù)的單調(diào)性求得a的范圍.

解答 解:將函數(shù)f(x)=cosx圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),可得y=cos$\frac{x}{2}$的圖象;
然后向右平移$\frac{π}{6}$個單位后得到函數(shù)g(x)=cos$\frac{x-\frac{π}{6}}{2}$=cos($\frac{x}{2}$-$\frac{π}{12}$) 的圖象,
若函數(shù)g(x)在區(qū)間$[{0,\frac{aπ}{9}}]$與[2aπ,4π]上均單調(diào)遞增,則 0-$\frac{π}{12}$=-$\frac{π}{12}$,$\frac{1}{2}•\frac{aπ}{9}$-$\frac{π}{12}$≤0,且$\frac{2aπ}{2}$-$\frac{π}{12}$≥2kπ-π,$\frac{4π}{2}$-$\frac{π}{12}$≤2kπ,k∈Z.
求得$\frac{13}{12}$≤a≤$\frac{3}{2}$,
故選:B.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.${({2{x^2}-\frac{1}{x}})^6}$的展開式中常數(shù)項(xiàng)為( 。
A.60B.-60C.80D.-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在區(qū)間[-1,3]上隨機(jī)取一個實(shí)數(shù)x,則x使不等式|x|≤2成立的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\frac{{x}^{2}}{2}$-alnx(a≠0).
(1)討論f(x)的單調(diào)性和極值;
(2)證明:當(dāng)a>0時,若f(x)存在零點(diǎn),則f(x)在區(qū)間(1,$\sqrt{e}$]上僅有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從混有3張假鈔的10張百元鈔票中任意抽出2張,將其中1張放到驗(yàn)鈔機(jī)上檢驗(yàn)發(fā)現(xiàn)是假鈔,則另一張也是假鈔的概率為( 。
A.$\frac{1}{8}$B.$\frac{2}{9}$C.$\frac{1}{15}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=sin({2x+\frac{π}{6}})+sin({2x-\frac{π}{6}})+cos2x+1$.
(1)求函數(shù)f(x)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C,的對邊分別為a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.連續(xù)擲一枚質(zhì)地均勻的骰子4次,設(shè)事件A=“恰有2次正面朝上的點(diǎn)數(shù)為3的倍數(shù)”,則P(A)=$\frac{8}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=(x2-3)ex,現(xiàn)給出下列結(jié)論:
①f(x)有極小值,但無最小值②f(x)有極大值,但無最大值
③若方程f(x)=b恰有一個實(shí)數(shù)根,則b>6e-3
④若方程f(x)=b恰有三個不同實(shí)數(shù)根,則0<b<6e-3
其中所有正確結(jié)論的序號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=alnx+$\frac{1}{x}$-bx+1.
(Ⅰ)若2a-b=4,則當(dāng)a>2時,討論f(x)的單調(diào)性;
(Ⅱ)令a≥-4,b=-1,F(xiàn)(x)=f(x)-$\frac{5}{x}$,若存在x0∈[1,4],使得不等式F(x0)≥2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案