分析 (1)分類(lèi)討論,求出f(x)的最小值,即可證明結(jié)論;
(2)?x∈R,不等式3f(x)≥f(a+1)恒成立,即?x∈R,不等式3[|x+2|+|x-3|]≥|a+3|+|a-2|恒成立,可得|a+3|+|a-2|≤15,分類(lèi)討論求實(shí)數(shù)a的取值范圍.
解答 (1)證明:f(x)=|x+2|+|x-3|,
x≤-2時(shí),f(x)=-x-2-x+3=-2x+1≥5,
-2<x<3時(shí),f(x)=x+2-x+3=5,
x≥3時(shí),f(x)=x+2+x-3=2x-1≥35,
∴f(x)≥5=f(0);
(2)解:?x∈R,不等式3f(x)≥f(a+1)恒成立,即?x∈R,不等式3[|x+2|+|x-3|]≥|a+3|+|a-2|恒成立,
∴|a+3|+|a-2|≤15,
a≤-3時(shí),-a-3-a+2≤15,∴a≥-8,∴-8≤a≤-3,
-3<a<2時(shí),a+3-a+2≤15,成立;
a≥2時(shí),a+3+a-2≤15,∴a≤7,∴2≤a≤7,
綜上所述,-8≤a≤7.
點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的解法,考查恒成立問(wèn)題、最值問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>4 | B. | a≥4 | C. | a≥0 | D. | a>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com