某商店銷售10臺型和20臺型電腦的利潤為4000元,銷售20臺型和10臺型電腦的利潤為3500元.

(1)求每臺型電腦和型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中型電腦的進貨量不超過A型電腦的2倍.設(shè)購進掀電腦臺,這100臺電腦的銷售總利潤為元.

①求的關(guān)系式;

②該商店購進型、型各多少臺,才能使銷售利潤最大?

(3)實際進貨時,廠家對型電腦出廠價下調(diào))元,且限定商店最多購進型電腦70臺.若商店保持兩種電腦的售價不變,請你以上信息及(2)中的條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.從拋物線y2=4x的準(zhǔn)線l上一點P引拋物線的兩條切線PA,PB,A,B為切點,若直線AB的傾斜角為$\frac{π}{3}$,則P點的縱坐標(biāo)為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在三棱錐P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2$\sqrt{3}$,PA⊥平面ABC,若三棱錐P-ABC的外接球的表面積為24π,則該三棱錐的體積為$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是全等的等腰三角形,現(xiàn)從該幾何體的實心外接球中挖去該幾何體,則剩余幾何體的體積是( 。
A.$\frac{9π}{4}$-$\frac{1}{6}$B.$\frac{9π}{16}$-$\frac{1}{2}$C.$\frac{9π}{16}$-$\frac{1}{6}$D.$\frac{9π}{8}$-$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-m-ln2x
(Ⅰ)若m=1,求函數(shù)f(x)的極小值;
(Ⅱ)設(shè)m≤2,證明:f(x)+ln2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.學(xué)校為了解學(xué)生每月購買學(xué)習(xí)用品方面的支出情況,抽取了n名學(xué)生進行調(diào)查,結(jié)果顯示這些學(xué)生的支出(單位:元)都在[10,50]內(nèi),其頻率分布直方圖如圖所示,其中支出在[10,30)內(nèi)的學(xué)生有66人,則支出在[40,50]內(nèi)的學(xué)生人數(shù)是( 。
A.30B.40C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓C過坐標(biāo)原點,面積為2π,且與直線l:x-y+2=0相切,則圓C的方程是(x+$\sqrt{2}$)2+(y+$\sqrt{2}$)2=2或(x-$\sqrt{2}$)2+(y-$\sqrt{2}$)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲、乙二人進行一次圍棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結(jié)束.假設(shè)在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0.4,各局比賽結(jié)果相互獨立.已知前2局中,甲、乙各勝1局.
(Ⅰ)求甲獲得這次比賽勝利的概率;
(Ⅱ)求經(jīng)過5局比賽,比賽結(jié)束的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|-1≤x≤1},B={x|x≥a},且命題“?x0∈A,使x0∉B”為真命題,則實數(shù)a的取值范圍是(  )
A.[-1,1]B.(-1,1)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案