3.某幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是全等的等腰三角形,現(xiàn)從該幾何體的實心外接球中挖去該幾何體,則剩余幾何體的體積是( 。
A.$\frac{9π}{4}$-$\frac{1}{6}$B.$\frac{9π}{16}$-$\frac{1}{2}$C.$\frac{9π}{16}$-$\frac{1}{6}$D.$\frac{9π}{8}$-$\frac{1}{6}$

分析 由題意,確定幾何體為三棱錐,設(shè)三棱錐外接球的半徑為r,則r2=(1-r)2+($\frac{\sqrt{2}}{2}$)2,求出r,即可求出三棱錐外接球的體積以及三棱錐的體積,然后求差即可.

解答 解:由題意,幾何體是三棱錐的一個側(cè)面垂直于底面,底面是等腰直角三角形,頂點在底面中的射影是底面斜邊的中點,
設(shè)三棱錐外接球的半徑為r,則r2=(1-r)2+($\frac{\sqrt{2}}{2}$)2,
∴r=$\frac{3}{4}$,
∴三棱錐外接球的體積為$\frac{9}{16}$π;又三棱錐的體積$\frac{1}{3}×\frac{1}{2}×1×1×1=\frac{1}{6}$,
所以從該幾何體的實心外接球中挖去該幾何體,則剩余幾何體的體積是$\frac{9π}{16}-\frac{1}{6}$;
故選C.

點評 本題考查球和幾何體之間的關(guān)系,本題解題的關(guān)鍵是確定三棱錐外接球的半徑,從而得到外接球的表面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{2π}{3}$)(ω>0)的部分圖象如圖所示,則函數(shù)g(x)=cos(ωx+$\frac{2π}{3}$)的圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.有一長、寬分別為50m、30m的游泳池,一名工作人員在池邊巡視,某時刻出現(xiàn)在池邊任一位置的可能性相同.一人在池中心(對角線交點)處呼喚工作人員,其聲音可傳出$15\sqrt{2}m$,則工作人員能及時聽到呼喚(出現(xiàn)在聲音可傳到區(qū)域)的概率是( 。
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{3π}{16}$D.$\frac{12+3π}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知點P(x,y)是直線l:y=kx+2(k>0)上一動點,過P作圓(x-2)2+(y-2)2=1的切線,當(dāng)切線長最短為$\sqrt{2}$時,此時直線l的斜率k=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=2px(p>0)上一點M到焦點F的距離等于2p,則直線MF的斜率為±$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ln(x-1)+$\frac{2a}{x}$(a∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1,且x≠2時,xln(x-1)>a(x-2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題

某商店銷售10臺型和20臺型電腦的利潤為4000元,銷售20臺型和10臺型電腦的利潤為3500元.

(1)求每臺型電腦和型電腦的銷售利潤;

(2)該商店計劃一次購進(jìn)兩種型號的電腦共100臺,其中型電腦的進(jìn)貨量不超過A型電腦的2倍.設(shè)購進(jìn)掀電腦臺,這100臺電腦的銷售總利潤為元.

①求的關(guān)系式;

②該商店購進(jìn)型、型各多少臺,才能使銷售利潤最大?

(3)實際進(jìn)貨時,廠家對型電腦出廠價下調(diào))元,且限定商店最多購進(jìn)型電腦70臺.若商店保持兩種電腦的售價不變,請你以上信息及(2)中的條件,設(shè)計出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x>0,求f(x)=$\frac{12}{x}$+3x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題

解方程:.

查看答案和解析>>

同步練習(xí)冊答案