9.在△ABC中,角A,B,C的對(duì)邊分別是a、b、c,已知$\overrightarrow a=({cosA,cosB})$,$\overrightarrow b=({a,2c-b})$,且$\overrightarrow a∥\overrightarrow b$.
(Ⅰ)求角A的大小;
(Ⅱ)若b=3,△ABC的面積${S_{△ABC}}=3\sqrt{3}$,求a的值.

分析 (Ⅰ)利用向量平行,列出方程,通過(guò)兩角和與差的三角函數(shù),化簡(jiǎn)求解角A的大。
(Ⅱ)利用三角形的面積,求出c,然后利用余弦定理求解a即可.

解答 解:(Ⅰ)∵$\overrightarrow a∥\overrightarrow b$,∴(2c-b)•cosA-a•cosB=0,
∴cosA•(2sinC-sinB)-sinA•cosB=0,
即2cosAsinC-cosAsinB-sinA•cosB=0,
∴2cosAsinC=cosAsinB+sinA•cosB,
∴2cosAsinC=sin(A+B),
即2cosAsinC=sinC,
∵sinC≠0∴2cosA=1,即$cosA=\frac{1}{2}$又0<A<π∴$A=\frac{π}{3}$,
(Ⅱ)∵b=3,由(Ⅰ)知∴$A=\frac{π}{3}$,${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×3c×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,
∴c=4,由余弦定理有a2=b2+c2-2bccosA=${3^2}+{4^2}-2×3×4×\frac{1}{2}=13$,
∴$a=\sqrt{13}$.

點(diǎn)評(píng) 本題考查向量與三角函數(shù)相結(jié)合求解三角形的幾何量,考查余弦定理的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.(2016-x)(1+x)2017的展開(kāi)式中,x2017的系數(shù)為-1.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{2π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=4,則$\overrightarrow{a}$在$\overrightarrow$上的投影為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.將甲、乙、丙、丁四名學(xué)生分到三個(gè)不同的班,每個(gè)班至少分到一名學(xué)生,則不同的分法的總數(shù)是36.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$f(x)=2sin({2x+\frac{π}{6}})$,若將它的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)圖象的一條對(duì)稱(chēng)軸的方程為( 。
A.$x=\frac{π}{3}$B.$x=\frac{π}{4}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在極坐標(biāo)系中,射線$l:θ=\frac{π}{6}$與圓C:ρ=2交于點(diǎn)A,橢圓Γ的方程為:${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系xOy.
(Ⅰ)求點(diǎn)A的直角坐標(biāo)和橢圓Γ的參數(shù)方程;
(Ⅱ)若E為橢圓Γ的下頂點(diǎn),F(xiàn)為橢圓Γ上任意一點(diǎn),求$\overrightarrow{AE}•\overrightarrow{AF}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$f(x)=\left\{{\begin{array}{l}{{2^x}-2,x≥0}\\{-{x^2}+3,x<0}\end{array}}\right.$,若f(a)=2,則a的取值為( 。
A.2B.-1或2C.±1或2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}}\right.$(α為參數(shù)),M是C1上的動(dòng)點(diǎn),動(dòng)點(diǎn)P滿足OP=3OM.
(1)求動(dòng)點(diǎn)P的軌跡C2的參數(shù)方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線$θ=\frac{π}{6}$與C1異于極點(diǎn)的交點(diǎn)為A,與C2異于極點(diǎn)的交點(diǎn)為B,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合A={x|y=$\sqrt{2-x}$},B={x|3x-x2≥0},則集合A∩B=(  )
A.[0,2]B.[0,3]C.[0,2)D.(-∞,0]

查看答案和解析>>

同步練習(xí)冊(cè)答案