【題目】已知數列中,,前n項和為,且.
(1)求;
(2)證明數列為等差數列,并寫出其通項公式;
(3)設,試問是否存在正整數p,q(其中),使成等比數列?若存在,求出所有滿足條件的數組(p,q);若不存在,說明理由.
【答案】(1)(2)證明見解析;(3)存在唯一正整數數對,,,使,,成等比數列;詳見解析
【解析】
(1)令,即可求;
(2)根據等差數列的等差中項法即可證明數列為等差數列,并寫出其通項公式;
(3)根據等比數列的定義和通項公式,分類討論,通過數列的單調性求出數列最值,結合題意判斷求解,即可得到結論.
(1)令,則.
(2)由,即,①
得.②
②-①,得.③
于是,.④
③+④,得,即.
又,,,
所以,數列是以0為首項,1為公差的等差數列.
所以,.
(3)假設存在正整數數組(其中),使成等比數列,
則成等差數列,于是.
時,,故數列為遞減數列,
時,,故數列為遞減數列,
,,即時,.
又當時,,故無正整數q使得成立.
綜上得,存在唯一正整數數對,,,使,,成等比數列.
科目:高中數學 來源: 題型:
【題目】博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣共有戶籍人口60萬,經統(tǒng)計,該縣60歲及以上、百歲以下的人口占比,百歲及以上老人15人.現從該縣60歲及以上、百歲以下的老人中隨機抽取230人,得到如下頻數分布表:
年齡段(歲) | ||||
人數(人) | 125 | 75 | 25 | 5 |
(1)從樣本中70歲及以上老人中,采用分層抽樣的方法抽取21人,進一步了解他們的生活狀況,則80歲及以上老人應抽多少人?
(2)從(1)中所抽取的80歲及以上老人中,再隨機抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關于加強新時期老年人優(yōu)待服務工作的意見》精神,制定如下老年人生活補貼措施,由省、市、縣三級財政分級撥款:
①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險實施辦法每月領取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補貼;
(a)百歲及以上老年人,每人每月發(fā)放345元的生活補貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補貼.
試估計政府執(zhí)行此項補貼措施的年度預算.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,點E在AB上,AE=2EB=2,且DE⊥AB.以DE為折痕把△ADE折起,使點A到達點F的位置,且∠FEB=60°.
(1)求證:平面BFC⊥平面BCDE;
(2)若直線DF與平面BCDE所成角的正切值為,求二面角E﹣DF﹣C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列a,b,c是各項均為正數的等差數列,公差為d(d>0).在a,b之間和b,c之間共插入n個實數,使得這n+3個數構成等比數列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個數中,有s個位于a,b之間,t個位于b,c之間,且s,t都為奇數,試比較s與t的大小,并求插入的n個數的乘積(用a,c,n表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐的正視圖是一個底邊長為4腰長為3的等腰三角形,圖1、圖2分別是四棱錐的側視圖和俯視圖.
(1)求證:;
(2)求四棱錐的體積及側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】邊長為的等邊三角形內任一點到三邊距離之和為定值,則這個定值為;推廣到空間,棱長為的正四面體內任一點到各面距離之和為___________________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com