11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4,且點(diǎn)(-2,$\sqrt{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)若點(diǎn)B為橢圓的下頂點(diǎn),直線l與橢圓C交于不同的兩點(diǎn)P,Q(異于點(diǎn)B),直線BQ與BP的斜率之和為2,求證:直線l經(jīng)過(guò)定點(diǎn).

分析 (1)由橢圓的焦距為4,且點(diǎn)(-2,$\sqrt{2}$)在橢圓C上列出方程組求出a,b,則橢圓C的方程可求;
(2)B(0,-2),當(dāng)直線l的斜率不存在時(shí),推導(dǎo)出直線l為x=2;當(dāng)直線l的斜率k存在時(shí),設(shè)直線l的方程為y=kx+m,聯(lián)立直線方程與橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系及直線斜率公式,結(jié)合已知條件能證出直線l經(jīng)過(guò)定點(diǎn)(2,2).

解答 解:(1)由題意可得$\left\{\begin{array}{l}{2c=4}\\{\frac{4}{{a}^{2}}+\frac{2}{^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a2=8,b2=4,
∴橢圓C的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;
證明:(2)∵點(diǎn)B為橢圓C的下頂點(diǎn),∴B(0,-2),
當(dāng)直線l的斜率不存在時(shí),設(shè)直線l:x=x0,(-2$\sqrt{2}$<x0<2$\sqrt{2}$,x0≠0),
則P(x0,y0),Q(x0,-y0),
∵直線BQ與BP的斜率之和為2,
∴$\frac{{y}_{0}+2}{{x}_{0}}+\frac{-{y}_{0}+2}{{x}_{0}}=2$,解得x0=2,
∴直線l為x=2,過(guò)定點(diǎn)(2,2).
當(dāng)直線l的斜率k存在時(shí),設(shè)直線l的方程為y=kx+m,
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-8=0,
設(shè)P(x1,y1),Q(x2,y2),則${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$,
∵直線BQ與BP的斜率之和為2,
∴kBQ+kBP=$\frac{{y}_{2}+2}{{x}_{2}}+\frac{{y}_{1}+2}{{x}_{1}}$=$\frac{k{x}_{2}+m+2}{{x}_{2}}+\frac{k{x}_{1}+m+2}{{x}_{1}}$
=2k+$\frac{(m+2)({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=2k+$\frac{(m+2)•(-\frac{4km}{1+2{k}^{2}})}{\frac{2{m}^{2}-8}{1+2{k}^{2}}}$=2k-$\frac{2km}{m-2}$=$\frac{4k}{2-m}$=2,
∴m=2-2k,
∴y=kx+m=kx+2-2k=k(x-2)+2,
∴直線y=kx+m過(guò)定點(diǎn)(2,2).
綜上,直線l經(jīng)過(guò)定點(diǎn)(2,2).

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,體現(xiàn)了“設(shè)而不求”的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和是Sn=(n+2)2+k,當(dāng)k=-4時(shí),{an}是公差d=2的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知拋物線方程為y2=4x則焦點(diǎn)到準(zhǔn)線的距離為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題p:“?x0∈R,x02-x0>0”,則¬p是(  )
A.?x0∈R,x02-x0<0B.?x0∈R,x02-x0≤0C.?x∈R,x2-x<0D.?x∈R,x2-x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為了解今年某省高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,現(xiàn)采用隨機(jī)抽樣的方法抽取了一個(gè)樣本容量為240的樣本,并將所得的數(shù)據(jù)整理后,畫出了如圖所示的頻率分布直方圖(計(jì)算結(jié)果用分?jǐn)?shù)表示).
(1)求a的值,并用該樣本估計(jì)全省報(bào)考飛行員學(xué)生的體重的中位數(shù);
(2)若以樣本數(shù)據(jù)估計(jì)全省的總體數(shù)據(jù),且從全省報(bào)考飛行員的學(xué)生中(人數(shù)很多)任選二人,設(shè)X表示體重超過(guò)60kg的學(xué)生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知各項(xiàng)均為正數(shù)的數(shù)列{an}首項(xiàng)為2,且滿足$a_n^2-{a_n}{a_{n-1}}-n(n+1)a_{n+1}^2=0$,公差不為零的等差數(shù)列{bn}的前n項(xiàng)和為Sn,S5=15,且b1,b3,b9成等比數(shù)列,設(shè)${c_n}=\frac{b_n}{a_n}$
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知離心率為$\frac{{2\sqrt{3}}}{3}$的雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,若線段OF的垂直平分線與雙曲線一條漸近線的交點(diǎn)到另一條漸近線的距離為λc(c為半焦距,λ>0),則實(shí)數(shù)λ的值是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)為F,第二象限的點(diǎn)M在雙曲線C的漸近線上,且|OM|=a,若直線|MF|的斜率為$\frac{a}$,則雙曲線C的漸近線方程為( 。
A.y=±xB.y=±2xC.y=±3xD.y=±4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn,且an=$\frac{{S}_{n}+n}{2}$(n∈N*).
(Ⅰ)若數(shù)列{an+t}是等比數(shù)列,求t的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)記bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案