【題目】如圖:多面體中,四邊形為矩形,二面角為60°,,,,,.
(1)求證:平面;
(2)線段上一點,若銳二面角的正弦值為,求.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的左、右焦點分別為、,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.
Ⅰ求橢圓C的方程;
Ⅱ點為橢圓C上一動點,連接,,設的角平分線PM交橢圓C的長軸于點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓經(jīng)過點,左、右焦點分別是,,點在橢圓上,且滿足的點只有兩個.
(Ⅰ)求橢圓的方程;
(Ⅱ)過且不垂直于坐標軸的直線交橢圓于,兩點,在軸上是否存在一點,使得的角平分線是軸?若存在求出,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,E為AD中點,F為CC1中點.
(1)求證:AD⊥D1F;
(2)求證:CE//平面AD1F;
(3)求AA1與平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與的濃度是否相關,現(xiàn)采集到某城市周一至周五某時間段車流量與濃度的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 39 | 40 | 42 | 44 | 45 |
(1)根據(jù)上表數(shù)據(jù),求出這五組數(shù)據(jù)組成的散點圖的樣本中心坐標;
(2)用最小二乘法求出關于的線性回歸方程;
(3)若周六同一時間段車流量是100萬輛,試根據(jù)(2)求出的線性回歸方程預測,此時的濃度是多少?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當平面與平面垂直時,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,橢圓離心率為,、是橢圓C的短軸端點,且到焦點的距離為,點M在橢圓C上運動,且點M不與、重合,點N滿足.
(1)求橢圓C的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論中錯誤的是( )
A.“﹣2<m<3”是方程表示橢圓”的必要不充分條件
B.命題p:,使得的否定
C.命題“若,則方程有實根”的逆否命題是真命題
D.命題“若,則且”的否命題是“若,則或”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,圓上有一點,且點,的極坐標分別為,.
(1)求圓的直角坐標方程及直線的普通方程;
(2)設直線與坐標軸的兩個交點分別為,,點在圓上運動,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com