分析 利用輔助角公式化簡(jiǎn),當(dāng)x=$\frac{π}{6}$時(shí),函數(shù)f(x)=sinx+acosx取到最大值,求出a,即可求f(-$\frac{π}{12}$)的值
解答 解:函數(shù)f(x)=sinx+acosx=$\sqrt{{a}^{2}+1}$sin(x+θ),其中tanθ=a.
當(dāng)x=$\frac{π}{6}$時(shí),函數(shù)f(x取到最大值,
∴$\frac{π}{6}$+θ=$\frac{π}{2}+2kπ$,k∈Z.
可得:θ=2kπ$+\frac{π}{3}$.
即tan(2k$π+\frac{π}{3}$)=a.
∴a=$\sqrt{3}$.
那么f(x)=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$),
則f(-$\frac{π}{12}$)=2sin($-\frac{π}{12}$+$\frac{π}{3}$)=2sin$\frac{π}{4}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)和性質(zhì)的運(yùn)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | $\sqrt{15}$ | C. | ±$\sqrt{15}$ | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等腰直角三角形 | C. | 正三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | $\frac{3}{5}$ | D. | $-\frac{9}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x,y∈R,使sin(x+y)=sinx+siny成立 | |
B. | ?x∈R,使(x-1)2≤0成立 | |
C. | “x+y>2且xy>1”成立的充要條件是x>1且y>1 | |
D. | ?x∈R,使2x2-2x+1>0成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -b | B. | b | C. | -$\frac{14}{5}$ | D. | $\frac{14}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com