分析 先根據(jù)α,β的范圍確定α+β的取值范圍,再由題中所給sinα、cos(α+β)求出sin(α+β)與cosα的值,最后將β表示為(α+β-α)后運用兩角和與差的正弦公式可得答案
解答 解:0<α<$\frac{π}{2}$<β<π,sinα=$\frac{3}{5},sin(α+β)=\frac{3}{5}$,
∴$\frac{π}{2}$<α+β<$\frac{3π}{2}$,
∴cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{4}{5}$,
∴sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα=$\frac{4}{5}$×$\frac{3}{5}$-(-$\frac{4}{5}$)×$\frac{3}{5}$=$\frac{24}{25}$,
故答案為:$\frac{24}{25}$
點評 本題主要考查三角函數(shù)的兩角和與差的正弦公式.屬基礎題.三角函數(shù)部分公式比較多,容易記混,要給予重視.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|2<x≤3} | B. | {x|x>0或x<-2} | C. | {x|0≤x<2} | D. | {x|-2<x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}-\;\;\frac{2}{5}i$ | B. | $-\;\;\frac{2}{5}+\frac{4}{5}i$ | C. | $\frac{4}{5}+\frac{2}{5}i$ | D. | $-\;\;\frac{2}{5}-\;\;\frac{4}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關于原點對稱 | B. | 關于y軸對稱 | ||
C. | 關于直線x=$\frac{π}{6}$對稱 | D. | 關于點(-$\frac{π}{6}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-1] | C. | [1,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R,7x${\;}_{0}^{3}$+sin2x0≤3 | B. | ?x0∈R,7x${\;}_{0}^{3}$+sin2x0<3 | ||
C. | ?x∈R,7x3+sin2x≤3 | D. | ?x∈R,7x3+sin2x<3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,ex>0 | B. | ?x∈N,x2>0 | ||
C. | ?x0∈R,lnx0<0 | D. | $?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅ | B. | $\{x|\frac{1}{2}<x≤1\}$ | C. | {x|x<1} | D. | {x|0<x<1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com