6.若方程$2sin(2x+\frac{π}{6})=m$在$x∈[0,\frac{π}{2}]$上有兩個(gè)不相等的實(shí)數(shù)解x1,x2,則x1+x2=( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 由題意可得2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],根據(jù)題意可得 $\frac{{2x}_{1}+\frac{π}{6}+({2x}_{2}+\frac{π}{6})}{2}$=$\frac{π}{2}$,由此求得x1+x2 值.

解答 解:∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
方程$2sin(2x+\frac{π}{6})=m$在$x∈[0,\frac{π}{2}]$上有兩個(gè)不相等的實(shí)數(shù)解x1,x2
∴$\frac{{2x}_{1}+\frac{π}{6}+({2x}_{2}+\frac{π}{6})}{2}$=$\frac{π}{2}$,
則x1+x2=$\frac{π}{3}$,
故選:C.

點(diǎn)評 本題主要考查正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$與向量$\overrightarrow a$反向,求$\overrightarrow c$的坐標(biāo);
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$在$\overrightarrow b$方向上的射影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知tanx=3,tany=2,則tan(x-y)的值是$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)P($\sqrt{3}$,1),Q(cosx,sinx),O為坐標(biāo)原點(diǎn),函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(1)求函數(shù)f(x)的最小值及此時(shí)x的值;
(2)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為$\frac{3\sqrt{3}}{4}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過點(diǎn)(1,0)且與直線x-$\sqrt{2}$y+3=0平行的直線l被圓(x-6)2+(y-$\sqrt{2}$)2=12所截得的弦長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示,已知長方形ABCD中,BC=2AB,△EFG與△HIJ均為等邊三角形,F(xiàn)、H、G在AD上,I、E、J在BC上,連接FI,GJ,且AB∥FI∥GJ,若AF=GD,則向長方形ABCD內(nèi)投擲一個(gè)點(diǎn),該點(diǎn)落在陰影區(qū)域內(nèi)的概率為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,$\overrightarrow{AC}•\overrightarrow{CB}=2\sqrt{2}$,其面積為$\sqrt{2}$,則tan2A•sin2B的最大值是3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a=${∫}_{-\frac{π}{4}}^{\frac{π}{4}}$2cos(x-$\frac{π}{4}$)dx,則(x-$\frac{a}{\sqrt{x}}$)6的展開式中x3的系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知公差不為零的等差數(shù)列{an},滿足a1=2,且a1,a2,a4成等比數(shù)列,數(shù)列{bn}是首項(xiàng)為9,公比為3的等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案