15.已知a=${∫}_{-\frac{π}{4}}^{\frac{π}{4}}$2cos(x-$\frac{π}{4}$)dx,則(x-$\frac{a}{\sqrt{x}}$)6的展開式中x3的系數(shù)為60.

分析 先根據(jù)定積分求出a的值,再根據(jù)二項(xiàng)式的通向公式求得結(jié)果.

解答 解:a=${∫}_{-\frac{π}{4}}^{\frac{π}{4}}$2cos(x-$\frac{π}{4}$)dx=2sin(x-$\frac{π}{4}$)|${\;}_{-\frac{π}{4}}^{\frac{π}{4}}$=2[sin($\frac{π}{4}$-$\frac{π}{4}$)-sin(-$\frac{π}{4}$-$\frac{π}{4}$)]=2,
∴(x-$\frac{2}{\sqrt{x}}$)6的通項(xiàng)為C6r(-2)rx${\;}^{6-\frac{3}{2}r}$,
令6-$\frac{3}{2}$r=3,解得r=2,
∴展開式中x3的系數(shù)為C62(-2)2=60
故答案為:60

點(diǎn)評(píng) 本題主要考查了定積分的計(jì)算和二項(xiàng)式定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=tan\frac{x}{4}•{cos^2}\frac{x}{4}-2{cos^2}({\frac{x}{4}+\frac{π}{12}})+1$.
(Ⅰ)求f(x)的定義域及最小正周期;
(Ⅱ)求f(x)在區(qū)間[-π,0]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若方程$2sin(2x+\frac{π}{6})=m$在$x∈[0,\frac{π}{2}]$上有兩個(gè)不相等的實(shí)數(shù)解x1,x2,則x1+x2=( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{a}^{2}}$=1與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1焦點(diǎn)相同,則a=$±\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x}-3,x<0}\\{\sqrt{x+1},x≥0}\end{array}}\right.$若f(a)>1,則實(shí)數(shù)a的取值范圍是(  )
A.(0,2)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線y2=16x的準(zhǔn)線過雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一個(gè)焦點(diǎn),且雙曲線的一條漸近線為$y=\sqrt{3}x$,則該雙曲線的方程是$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若a>0,且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C的中心是坐標(biāo)原點(diǎn),直線$\sqrt{3}x-2y-4\sqrt{3}=0$過它的兩個(gè)頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(-4,0),過R(3,0)作與x軸不重合的直線l交橢圓于P,Q兩點(diǎn),連接AP,AQ,分別交直線$x=\frac{16}{3}$于M,N兩點(diǎn),試問直線MR,NR的斜率之積是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\ \begin{array}{l}{{a^x}-a},{x≥1}\end{array}\end{array}\right.$是R上的減函數(shù),則a的范圍是( 。
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

同步練習(xí)冊答案