14.已知函數(shù)y=f(x)是R上的偶函數(shù),對?x∈R都有f(x+4)=f(x)+f(2)成立.當(dāng)x1,x2∈[0,2]且x1≠x2時,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,給出下列命題:
(1)f(2)=0; 
(2)直線x=-4是函數(shù)y=f(x)圖象的一條對稱軸;
(3)函數(shù)y=f(x)在[-4,4]上有四個零點;
(4)f(2012)=f(0)
其中所有正確命題的序號為(1)(2)(4).

分析 由函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,我們令x=-2,可得f(-2)=f(2)=0,進而得到f(x+4)=f(x)恒成立,再由當(dāng)x1,x2∈[0,2],且x1≠x2時,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,得函數(shù)在區(qū)間[0,2]單調(diào)遞減,由此我們畫出函數(shù)的簡圖,然后對題目中的四個結(jié)論逐一進行分析,即可得到答案.

解答 解:∵對任意x∈R,都有f(x+4)=f(x)+f(2)成立
當(dāng)x=-2,可得f(-2)=0,
又∵函數(shù)y=f(x)是R上的偶函數(shù)
∴f(-2)=f(2)=0,故(1)正確;
由f(2)=0,知f(x+4)=f(x)+f(2)=f(x),故周期為4.
又由當(dāng)x1,x2∈[0,2]且x1≠x1時,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,
∴函數(shù)在區(qū)間[0,2]單調(diào)遞減,
由函數(shù)是偶函數(shù),知函數(shù)在[-2,0]上單調(diào)遞增,
再由函數(shù)的周期為4,得到函數(shù)f(x)的示意圖如下圖所示:

由圖可知:(1)正確,(2)正確,(3)錯誤,(4)正確
故答案為:(1)(2)(4).

點評 本題考查的知識點是函數(shù)的圖象,函數(shù)的奇偶性,函數(shù)的周期性,函數(shù)的零點,解答的關(guān)鍵是根據(jù)已知,判斷函數(shù)的性質(zhì),并畫出函數(shù)的草圖,結(jié)合草圖分析題目中相關(guān)結(jié)論的正誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x>3,則對于函數(shù)f(x)=x+$\frac{4}{x-3}$,下列說法正確的是( 。
A.函數(shù)f(x)有最大值7B.函數(shù)f(x)有最小值7C.函數(shù)f(x)有最小值4D.函數(shù)f(x)有最大值4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,已知b2+c2-a2=S△ABC,則tanA=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個銳角α、β,它們的終邊分別與單位圓相交于A、B兩點,已知A、B的縱坐標(biāo)分別為$\frac{{\sqrt{10}}}{10}$,$\frac{{\sqrt{2}}}{10}$.
(Ⅰ)求tan(α+β)的值;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則f($\frac{π}{3}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系中,設(shè)△ABC的頂點分別為A(0,a),B(b,0),C(c,0),點P(0,p)在線段AO上(異于端點),若a,b,c,p均為非零實數(shù),直線BP,CP分別交直線AC,AB于點E,F(xiàn).某同學(xué)已正確算得直線OE的方程為($\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0,則直線OF的方程為(  )
A.($\frac{1}{c}$-$\frac{1}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0B.($\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0C.(-$\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0D.($\frac{1}$+$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=x3+2x2+x+2,過點(-2,m)可作曲線y=f(x)的三條切線,則m的取值范圍為(  )
A.(-$\frac{64}{27}$,0)B.(-∞,0)C.(1,$\frac{64}{27}$)D.(-,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是一個正方體的平面展開圖,在這個正方體中
①BM∥ED
②EF∥CD
③CN與BM為異面直線    
④DM⊥BN
以上四個命題中,正確的序號是( 。
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,已知EB是半圓O的直徑,A是BE延長線上一點,AC切半圓O于點D,BC⊥AC于點C,DF⊥EB于點F,若AC=8,BC=6,則DF=( 。
A.3B.4C.$\frac{15}{4}$D.$\frac{7}{2}$

查看答案和解析>>

同步練習(xí)冊答案