A. | $\frac{1}{8}$ | B. | $\frac{3}{64}$ | C. | $\frac{3}{8}$ | D. | $\frac{9}{64}$ |
分析 每次所取的3個小球顏色各不相同的概率為$\frac{1}{2}$,由此能求出這3次取球中,恰有2次所取的3個小球顏色各不相同的概率.
解答 解:每次所取的3個小球顏色各不相同的概率為:
$\frac{2{C}_{2}^{1}{C}_{2}^{1}{C}_{3}^{1}+2{C}_{2}^{1}{C}_{3}^{1}{C}_{3}^{1}}{{C}_{10}^{3}}$=$\frac{1}{2}$,
∴這3次取球中,恰有2次所取的3個小球顏色各不相同的概率為:
p=${C}_{3}^{2}(\frac{1}{2})^{2}(1-\frac{1}{2})$=$\frac{3}{8}$.
故選:C.
點評 本題考查概率的求法,是基礎題,解題時要審題,注意n次獨立重復試驗中事件A恰好發(fā)生k次的概率計算公式的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 105 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)的最大值為2 | B. | f(x)的最大值為3 | C. | f(x)的最小值為2 | D. | f(x)的最小值為3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4個 | B. | 5個 | C. | 6個 | D. | 7個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com