A. | -$\frac{5}{7}$ | B. | $-\frac{7}{5}$ | C. | $\frac{10}{7}$ | D. | $-\frac{10}{7}$ |
分析 利用同角三角函數的基本關系,求得sinα和cosα的值,可得要求式子的值.
解答 解:已知$\frac{π}{2}<α<π$,sinα+cosα=$\frac{1}{5}$,
∴1+2sinα•cosα=$\frac{1}{25}$,∴sinαcosα=-$\frac{12}{25}$,
∴sinα>0,cosα<0.
再根據sin2α+cos2α=1,可得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
∴$\frac{2}{cosα-sinα}$=$\frac{2}{-\frac{7}{5}}$=-$\frac{10}{7}$,
故選:D.
點評 本題主要考查同角三角函數的基本關系的應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{2017}$ | B. | $\frac{2π}{2017}$ | C. | $\frac{4π}{2017}$ | D. | $\frac{π}{4034}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x>0} | B. | {x|x≥0} | C. | {x|0<x<1} | D. | {x|x<1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({0,\frac{1}{e}})$ | B. | $[{\frac{1}{4},\frac{1}{e}})$ | C. | $({0,\frac{1}{4}}]$ | D. | $({\frac{1}{4},e})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{6}$ | C. | 4 | D. | 4$\sqrt{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com