19.執(zhí)行如圖的程序框圖,如果輸入的t=0.01,則輸出的n=(  )
A.5B.7C.10D.12

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量n的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:第一次執(zhí)行循環(huán)體后,S=$\frac{1}{2}$,m=$\frac{1}{4}$,n=1,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S=$\frac{1}{4}$,m=$\frac{1}{8}$,n=2,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S=$\frac{1}{8}$,m=$\frac{1}{16}$,n=3,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S=$\frac{1}{16}$,m=$\frac{1}{32}$,n=4,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S=$\frac{1}{32}$,m=$\frac{1}{64}$,n=5,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S=$\frac{1}{64}$,m=$\frac{1}{128}$,n=6,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S=$\frac{1}{128}$,m=$\frac{1}{256}$,n=7,滿足退出循環(huán)的條件;
故輸出的n值為7.
故選:B.

點評 本題考查的知識點是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.△ABC中,角A,B,C所對的邊分別為a,b,c,且${a^2}+{b^2}+\sqrt{2}ab={c^2}$,則tanAtan2B的取值范圍是$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,則$\overrightarrow{DE}$=( 。
A.$\frac{3}{4}$$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$B.$\frac{5}{12}$$\overrightarrow$-$\frac{3}{4}$$\overrightarrow{a}$C.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$D.$\frac{5}{12}$$\overrightarrow{a}$-$\frac{3}{4}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+y2=r2具有如下性質(zhì):若M,N是圓C上關(guān)于原點對稱的兩個點,點P是圓C上任意一點,當(dāng)直線PM,PN的斜率都存在時,記為kPM,kPN,則kPM與kPN之積是一個與點P的位置無關(guān)的定值.
利用類比思想,試對橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$寫出具有類似特征的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)證明:x∈[0,1]時,$\frac{{\sqrt{2}}}{2}x≤sinx≤x$
(2)若不等式${x^2}+{m^2}x+2(x+2)cosx≤-\frac{1}{2}{x^3}+3mx+4$對x∈[0,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=sinπx,則$f({-\frac{5}{2}})+f(1)+f(2)$=( 。
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{m}$=(a,b2-b+$\frac{7}{3}$),$\overrightarrow{n}$=(a+b+2,1),$\overrightarrow{μ}$=(2,1).
(1)若$\overrightarrow{m}$∥$\overrightarrow{μ}$,求a的最小值;
(2)求證:$\overrightarrow{m}$ 與$\overrightarrow{n}$的夾角不是鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一點,以AB為一邊作等邊三角形ABC.當(dāng)四邊形OACB面積最大時,∠AOB=150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓的四個頂點為頂點的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為$\frac{1}{2}$的直線l與橢圓C交于A,B兩點,點P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點M,N,求線段MN的長度.

查看答案和解析>>

同步練習(xí)冊答案