4.已知f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=sinπx,則$f({-\frac{5}{2}})+f(1)+f(2)$=( 。
A.0B.1C.-1D.-2

分析 根據(jù)f(x)是奇函數(shù)可得f(-x)=-f(x),又根據(jù)f(x)是以2為周期的周期函數(shù)得f(x+2)=f(x),取x=-1可求出f(1)的值,又f(-$\frac{5}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-1,f(2)=f(0)=0,即可得出結(jié)論.

解答 解:∵f(x)是以2為周期的周期函數(shù),
∴f(1)=f(-1),
又函數(shù)f(x)是奇函數(shù),
∴-f(1)=f(-1)=f(1),
∴f(1)=f(-1)=0,
又f(-$\frac{5}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-1,f(2)=f(0)=0,
∴$f({-\frac{5}{2}})+f(1)+f(2)$=-1,
故選C.

點(diǎn)評(píng) 本小題主要考查函數(shù)的周期性、函數(shù)奇偶性的應(yīng)用、函數(shù)的值等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中0<α<$\frac{π}{2}$)與圓C交于O,P兩點(diǎn),與直線l交于點(diǎn)M,射線ON:θ=α-$\frac{π}{2}$與圓C交于O,Q兩點(diǎn),與直線l交于點(diǎn)N,求$\frac{|OP|}{|OM|}$•$\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為e=$\frac{1}{2}$,過點(diǎn)($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)
(I)求橢圓C的方程;
(II)過A(-a,0)且互相垂直的兩條直線l1、l2與橢圓C的另一個(gè)交點(diǎn)分別為P、Q.問:直線PQ是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn);否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知cos31°=a,則sin239°的值為-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖的程序框圖,如果輸入的t=0.01,則輸出的n=( 。
A.5B.7C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知下列四個(gè)關(guān)系:
①a>b?ac2>bc2;
②a>b⇒$\frac{1}{a}$<$\frac{1}$;
③a>b>0,c>d⇒$\frac{a}xpbnrf3$>$\frac{c}$;
④a>b>0⇒ac<bc
其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=xsinx+cosx的導(dǎo)數(shù)為y′=xcosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程$sin\frac{x}{2}-cos\frac{x}{2}=1$的解集為{x|$x=kπ+\frac{π}{4}$或$x=kπ+\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某五國(guó)領(lǐng)導(dǎo)人A,B,C,D,E參加國(guó)際會(huì)議,除E與B,E與D不單獨(dú)會(huì)晤外,其他領(lǐng)導(dǎo)人兩兩之間都要單獨(dú)會(huì)晤,現(xiàn)安排他們?cè)趦商斓纳衔、下午單?dú)會(huì)晤(每人每個(gè)半天最多進(jìn)行一次會(huì)晤),那么安排他們單獨(dú)會(huì)晤的不同方法共有( 。
A.48種B.36種C.24種D.8種

查看答案和解析>>

同步練習(xí)冊(cè)答案