13.已知$D=\left\{{\left.{({x,y})}\right|\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≤0\\ 3x-y+6≥0\end{array}\right.}\right\}$,給出下列四個命題:
P1:?(x,y)∈D,x+y≥0;
P2:?(x,y)∈D,2x-y+1≤0;
${P_3}:?({x,y})∈D,\frac{y+1}{x-1}≤-4$;
 ${P_4}:?({x,y})∈D,{x^2}+{y^2}≤2$;
其中真命題的是( 。
A.P1,P2B.P2,P3C.P3,P4D.P2,P4

分析 畫出約束條件不是的可行域,利用目標(biāo)函數(shù)的幾何意義,求出范圍,判斷選項的正誤即可.

解答 解:$D=\left\{{\left.{({x,y})}\right|\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≤0\\ 3x-y+6≥0\end{array}\right.}\right\}$的可行域如圖,
p1:A(-2,0)點,-2+0=-2,x+y的最小值為-2,
故?(x,y)∈D,x+y≥0為假命題;   
p2:B(-1,3)點,-2-3+1=-4,
A(-2,0),-4-0+1=-3,C(0,2),0-2+1=-1,
故?(x,y)∈D,2x-y+1≤0為真命題;
p3:C(0,2)點,$\frac{2+1}{0-1}$=-3,
故?(x,y)∈D,$\frac{y+1}{x-1}$≤-4為假命題;      
p4:(-1,1)點,x2+y2=2.
故?(x,y)∈D,x2+y2≤2為真命題.
可得選項p2,p4正確.
故選:D.

點評 本題考查線性規(guī)劃的解得應(yīng)用,命題的真假的判斷,正確畫出可行域以及目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表,是“算經(jīng)十書”中最重要的一種,是當(dāng)時世界上最簡練有效的應(yīng)用數(shù)字,它的出現(xiàn)標(biāo)志中國古代數(shù)學(xué)形成了完整的體系.其中《方田》章有弧田面積計算問題,計算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計算公式為:弧田面積=$\frac{1}{2}$(弦×矢+矢×矢),弧田是由圓弧(簡稱為弧田。┖鸵詧A弧的端點為端點的線段(簡稱為弧田弧)圍成的平面圖形,公式中“弦”指的是弧田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計算公式算得該弧田的面積為$\frac{7}{2}$平方米,則cos∠AOB=( 。
A.$\frac{1}{25}$B.$\frac{3}{25}$C.$\frac{1}{5}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z=i(z-i),則復(fù)數(shù)z所對應(yīng)的點Z在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線y=x上存在點(x,y)滿足約束條件$\left\{\begin{array}{l}x+y-4≤0\\ x-2y-3≤0\\ x≥m\end{array}\right.$,則實數(shù)m的最大值為( 。
A.-1B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構(gòu)成等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令an=lgTn,n≥1,且n∈N+
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=tanan•tanan+1,求數(shù)列{bn}的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{x+4}{e^{x+2}}$.
(I)討論函數(shù)的單調(diào)性,并證明當(dāng)x>-2時,xex+2+x+4>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時,函數(shù)g(x)=$\frac{{{e^{x+2}}-ax-3a}}{{{{(x+2)}^2}}}$(x>-2)有最小值,設(shè)g(x)最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.近年來某城市空氣污染較為嚴(yán)重,為了讓市民及時了解空氣質(zhì)量情況,氣象部門每天發(fā)布空氣質(zhì)量指數(shù)“API”和“PM2.5”兩項監(jiān)測數(shù)據(jù),某段時間內(nèi)每天兩項質(zhì)量指數(shù)的統(tǒng)計數(shù)據(jù)的頻率分布直方圖如圖所示,質(zhì)量指數(shù)的數(shù)據(jù)在[0,50]內(nèi)的記為優(yōu),其中“API”數(shù)據(jù)在[200,250]內(nèi)的天數(shù)有10天

(1)求這段時間PM2.5數(shù)據(jù)為優(yōu)的天數(shù);
(2)已知在這段時間中,恰有2天的兩項數(shù)據(jù)均為優(yōu),在至少一項數(shù)據(jù)為優(yōu)的這些天中,隨機(jī)抽取2天進(jìn)行分析,求這2天的兩項數(shù)據(jù)為優(yōu)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知動圓C過定點F2(1,0),并且內(nèi)切于定圓F1:(x+1)2+y2=16.
(1)求動圓圓心C的軌跡方程;
(2)若y2=4x上存在兩個點M,N,(1)中曲線上有兩個點P,Q,并且M,N,F(xiàn)2三點共線,P,Q,F(xiàn)2三點共線,PQ⊥MN,求四邊形PMQN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充分不必要條件是a=$\frac{1}{2}$;命題q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,則下列判斷正確的是(  )
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∨(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

同步練習(xí)冊答案