分析 (Ⅰ)連接BE,只需證明BE⊥B1E,且AB⊥B1E=B,即可得到B1E⊥平面ABE;
(Ⅱ)由V${\;}_{A-BE{A}_{1}}$=V${\;}_{{A}_{1}-ABE}$=V${\;}_{{B}_{1}ABE}$=$\frac{1}{3}×{s}_{△ABE}×{B}_{1}E$=$\frac{1}{3}×\frac{1}{2}×AB×BE×{B}_{1}E=\frac{\sqrt{3}}{3}$,得AB=$\sqrt{3}$,異面直線AB和A1C1所成角為∠CAB,即可求解.
解答 證明:(Ⅰ)連接BE,∵BC=1 BB1=2,E是CC1上的中點
△BCE,△B1C1E為等腰直角三角形,即$∠BEC=∠{B}_{1}E{C}_{1}=\frac{π}{4}$,∴$∠BE{B}_{1}=\frac{π}{2}$,即BE⊥B1E
∵AB⊥面BB1C1C.B1E?面ABC,∴B1E⊥AB,且AB∩BE=B,
∴B1E⊥平面ABE;
解:(Ⅱ)∵AB∥A1B1,∴A1、B1到面ABE的距離相等,
由(Ⅰ)得BE=B1E=$\sqrt{2}$
故V${\;}_{A-BE{A}_{1}}$=V${\;}_{{A}_{1}-ABE}$=V${\;}_{{B}_{1}ABE}$
=$\frac{1}{3}×{s}_{△ABE}×{B}_{1}E$=$\frac{1}{3}×\frac{1}{2}×AB×BE×{B}_{1}E=\frac{\sqrt{3}}{3}$
解得AB=$\sqrt{3}$
∵AC∥A1C1,∴異面直線AB和A1C1所成角為∠CAB,
在Rt△ABC中,tan$∠CAB=\frac{CB}{AB}=\frac{\sqrt{3}}{3}$,∴∠CAB=30°
∴異面直線AB和A1C1所成角的大小30°.
點評 本題考查了空間線面垂直的判定,考查了異面直線夾角的求法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=90,n=56 | B. | m=30,n=56 | C. | m=90,n=792 | D. | m=30,n=792 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$ | B. | f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$) | C. | $f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$ | D. | $f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3) | B. | (3,4) | C. | (1,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,+∞) | B. | (0,3) | C. | (1,3) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com