4.如圖,在直三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,E是CC1上的中點,且BC=1,BB1=2.
(Ⅰ)證明:B1E⊥平面ABE
(Ⅱ)若三棱錐A-BEA1的體積是$\frac{{\sqrt{3}}}{3}$,求異面直線AB和A1C1所成角的大小.

分析 (Ⅰ)連接BE,只需證明BE⊥B1E,且AB⊥B1E=B,即可得到B1E⊥平面ABE;
(Ⅱ)由V${\;}_{A-BE{A}_{1}}$=V${\;}_{{A}_{1}-ABE}$=V${\;}_{{B}_{1}ABE}$=$\frac{1}{3}×{s}_{△ABE}×{B}_{1}E$=$\frac{1}{3}×\frac{1}{2}×AB×BE×{B}_{1}E=\frac{\sqrt{3}}{3}$,得AB=$\sqrt{3}$,異面直線AB和A1C1所成角為∠CAB,即可求解.

解答 證明:(Ⅰ)連接BE,∵BC=1    BB1=2,E是CC1上的中點
△BCE,△B1C1E為等腰直角三角形,即$∠BEC=∠{B}_{1}E{C}_{1}=\frac{π}{4}$,∴$∠BE{B}_{1}=\frac{π}{2}$,即BE⊥B1E
∵AB⊥面BB1C1C.B1E?面ABC,∴B1E⊥AB,且AB∩BE=B,
∴B1E⊥平面ABE;
解:(Ⅱ)∵AB∥A1B1,∴A1、B1到面ABE的距離相等,
由(Ⅰ)得BE=B1E=$\sqrt{2}$
故V${\;}_{A-BE{A}_{1}}$=V${\;}_{{A}_{1}-ABE}$=V${\;}_{{B}_{1}ABE}$
=$\frac{1}{3}×{s}_{△ABE}×{B}_{1}E$=$\frac{1}{3}×\frac{1}{2}×AB×BE×{B}_{1}E=\frac{\sqrt{3}}{3}$
解得AB=$\sqrt{3}$
∵AC∥A1C1,∴異面直線AB和A1C1所成角為∠CAB,
在Rt△ABC中,tan$∠CAB=\frac{CB}{AB}=\frac{\sqrt{3}}{3}$,∴∠CAB=30°
∴異面直線AB和A1C1所成角的大小30°.

點評 本題考查了空間線面垂直的判定,考查了異面直線夾角的求法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.隨著大數(shù)據(jù)統(tǒng)計的廣泛應(yīng)用,給人們的出行帶來了越來越多的方便.郭叔一家計劃在8月11日至8月20日暑假期間游覽上海Disney主題公園.通過上網(wǎng)搜索旅游局的統(tǒng)計數(shù)據(jù),該Disney主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比,40%以下為舒適,40%-60%為一般,60%以上為擁擠)情況如圖所示.郭叔預(yù)計隨機(jī)的在8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽2天.

(Ⅰ)求郭叔連續(xù)兩天都遇上擁擠的概率;
(Ⅱ)設(shè)X是郭叔游覽期間遇上舒適的天數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(直接寫出結(jié)論不要求證明,計算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某市有6條南北向街道,4條東西向街道,圖中共有m個矩形,從A點走到B點最短路線的走法有n種,則m,n的值分別為( 。
A.m=90,n=56B.m=30,n=56C.m=90,n=792D.m=30,n=792

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=sin(ωx+φ)(ω>0),|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的單調(diào)遞減區(qū)間是[$\frac{5π}{12}$,$\frac{11π}{12}$].
(1)求f(x)的解析式;
(2)將y=f(x)的圖象先向右平移$\frac{π}{6}$個單位,再將圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),所得到的圖象對用的函數(shù)記為g(x),若對于任意一的x∈[$\frac{π}{8}$,$\frac{3π}{8}$],不等式-1<g(x)-m<1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在山腳A測得山頂P的仰角為60°,沿傾斜角為15°的斜坡向上走200米到B,在B處測得山頂P的仰角為75°,則山高h(yuǎn)=150($\sqrt{6}$+$\sqrt{2}$)米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=sin(2x+φ)(φ是常數(shù)),若$f(0)=f(\frac{2π}{3})$,則$f(\frac{π}{12})$,$f(\frac{4π}{3})$,$f(\frac{π}{2})$之間的大小關(guān)系可能是( 。
A.$f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$B.f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$)C.$f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$D.$f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|2<x<4},B={x|x2-4x+3>0},則A∩B=(  )
A.(2,3)B.(3,4)C.(1,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|x>1},B={x|x(x-3)<0},則A∩B=(  )
A.[3,+∞)B.(0,3)C.(1,3)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.我國齊梁時代的數(shù)學(xué)家祖暅(公元前5-6世紀(jì),祖沖之之子)提出了一條原理:“冪勢既同,則積不容異”,這個原理的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.該原理在西方直到十七世紀(jì)才由意大利數(shù)學(xué)家卡瓦列利發(fā)現(xiàn),比祖暅晚一千一百多年.橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體,如圖,將底面直徑都為2b,高皆為a的橢半球體和已被挖去了圓錐體的圓柱體放置于同一平面β上,用平行于平面β且與平面β任意距離d處的平面截這兩個幾何體,可橫截得到S及S環(huán)兩截面,可以證明S=S環(huán)總成立.據(jù)此,短軸長為$2\sqrt{3}$,長軸為5的橢球體的體積是10π.

查看答案和解析>>

同步練習(xí)冊答案