A. | $\frac{a^2}{b^2}$ | B. | $\frac{b^2}{a^2}$ | C. | $\frac{b^2}{c^2}$ | D. | 以上答案都不對(duì) |
分析 利用直線的離心公式,作差法,即可取得$\frac{{y}_{2}^{2}-{y}_{1}^{2}}{{x}_{2}^{2}-{x}_{1}^{2}}$=$\frac{^{2}}{{a}^{2}}$,即kPM•kPN=$\frac{^{2}}{{a}^{2}}$.
解答 解:由題意,設(shè)M(x1,y1),P(x2,y2),則N(-x1,-y1)
∴kPM•kPN=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$•$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{{y}_{2}^{2}-{y}_{1}^{2}}{{x}_{2}^{2}-{x}_{1}^{2}}$,
$\frac{{x}_{1}^{2}}{{a}^{2}}-\frac{{y}_{1}^{2}}{^{2}}=1$,②$\frac{{x}_{2}^{2}}{{a}^{2}}-\frac{{y}_{2}^{2}}{^{2}}=1$,①
∴②-①可得$\frac{{y}_{2}^{2}-{y}_{1}^{2}}{{x}_{2}^{2}-{x}_{1}^{2}}$=$\frac{^{2}}{{a}^{2}}$,
故kPM•kPN=$\frac{^{2}}{{a}^{2}}$,
故選B.
點(diǎn)評(píng) 本題考查雙曲線的簡單幾何性質(zhì),直線的斜率公式,點(diǎn)差法的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 21 | C. | 25 | D. | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.2 | B. | 0.6 | C. | 0.4 | D. | -0.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)+f(2)<2f(1) | B. | f(0)+f(2)≤2f(1) | C. | f(0)+f(2)≥2f(1) | D. | f(0)+f(2)>2f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 3 | C. | 15 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{31}{15}$ | B. | $-\frac{7}{5}$ | C. | $-\frac{31}{17}$ | D. | $-\frac{9}{13}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com