A. | 直線a,b,c,若a∥b,b∥c,則a∥c.類推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$ | |
B. | 同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b | |
C. | 若a,b∈R,則a-b>0⇒a>b.類推出:若a,b∈C,則a-b>0⇒a>b | |
D. | 由向量加法的幾何意義,可以類比得到復(fù)數(shù)加法的幾何意義. |
分析 A,B,C可以根據(jù)定義,概念等判斷即可;D結(jié)合復(fù)數(shù)的坐標(biāo)表示和向量的關(guān)系得出結(jié)論.
解答 解:A中直線a,b,c,若a∥b,b∥c,則a∥c.類推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$,只有當(dāng)$\overrightarrow b$不是零向量的情況下成立,故錯(cuò)誤;
B中同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b,或垂直或異面,故錯(cuò)誤;
C中若a,b∈R,則a-b>0⇒a>b.類推出:若a,b∈C,則a-b>0⇒a>b,在復(fù)數(shù)中,兩虛數(shù)無法比較大小,故錯(cuò)誤;
D中根據(jù)復(fù)數(shù)可以表示平面向量,都遵循平行四邊形法則,故正確.
故選D.
點(diǎn)評 考查了向量共線的概念,空間直線的位置關(guān)系,虛數(shù)的定義和復(fù)數(shù)的加法的幾何意義.屬于基礎(chǔ)知識,應(yīng)熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{3}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}-1$ | D. | $\frac{{\sqrt{3}}}{2}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com