14.橢圓$\frac{x^2}{8}+\frac{y^2}{6}$=1上存在n個不同的點P1,P2,…,Pn,橢圓的右焦點為F.?dāng)?shù)列{|PnF|}是公差大于$\frac{1}{5}$的等差數(shù)列,則n的最大值是( 。
A.16B.15C.14D.13

分析 (|PnF|)min≥|a-c|=$\sqrt{2}$,(|PnF|)max≤a+c=3$\sqrt{2}$,|PnF|=|P1F|+(n-1)d.再由數(shù)列{|PnF|}是公差大于$\frac{1}{5}$的等差數(shù)列,可求出n的最大值.

解答 解:∵(|PnF|)min≥|a-c|=$\sqrt{2}$,(|PnF|)max≤a+c=3$\sqrt{2}$,||PnF|=|P1F|+(n-1)d
∵數(shù)列{|PnF|}是公差d大于$\frac{1}{5}$的等差數(shù)列,
∴d=$\frac{3\sqrt{2}-\sqrt{2}}{n-1}$>$\frac{1}{5}$,解得n<10$\sqrt{2}$+1,
則n的最大值為15
故選:B

點評 本題考查橢圓的應(yīng)用和等差數(shù)列的性質(zhì),解題時要認真審題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若sinθ,cosθ是方程4x2+2mx+m=0的兩根,則m的值為(  )
A..$1+\sqrt{5}$B..$1-\sqrt{5}$C.$.1±\sqrt{5}$D..$-1-\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.我們知道平方運算和開方運算是互逆運算,如:a2±2ab+b2=(a±b)2,那么$\sqrt{{a}^{2}±2ab+^{2}}$=|a±b|,那么如何將雙重二次根式$\sqrt{a±2\sqrt}$(a>0,b>0,a±2$\sqrt$>0)化簡呢?如能找到兩個數(shù)m,n(m>0,n>0),使得($\sqrt{m}$)2+($\sqrt{n}$)2=a即m+n=a,且使$\sqrt{m}$•$\sqrt{n}$=$\sqrt$即m•n=b,那么a±2$\sqrt$=(($\sqrt{m}$)2+($\sqrt{n}$)2±2$\sqrt{m}•\sqrt{n}$=($\sqrt{m}±\sqrt{n}$)2
∴$\sqrt{a±2\sqrt}$=|$\sqrt{m}±\sqrt{n}$|,雙重二次根式得以化簡;例如化簡:$\sqrt{3+2\sqrt{2}}$; Q3=1+2且2=1×2,
∴3+2$\sqrt{2}$=($\sqrt{1}$)2+($\sqrt{2}$)2+2$\sqrt{1}$×$\sqrt{2}$
∴$\sqrt{3+2\sqrt{2}}$=1+$\sqrt{2}$.
由此對于任意一個二次根式只要可以將其化成$\sqrt{a±2\sqrt}$的形式,且能找到m,n(m>0,n>0)使得m+n=a,且m•n=b,那么這個雙重二次根式一定可以化簡為一個二次根式.請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)填空:$\sqrt{5-2\sqrt{6}}$=$\sqrt{3}$-$\sqrt{2}$;$\sqrt{12+2\sqrt{35}}$=$\sqrt{7}$+$\sqrt{5}$;   
(2)化簡:
①$\sqrt{9+6\sqrt{2}}$;               
 ②$\sqrt{16-4\sqrt{15}}$;
(3)計算:$\sqrt{3-\sqrt{5}}$+$\sqrt{2+\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知${log_2}({16-{2^x}})=x$,求x的值
(2)計算:${({-\frac{1}{{\sqrt{5}-\sqrt{3}}}})^0}+{81^{0.75}}-\sqrt{{{({-3})}^2}}×{8^{\frac{2}{3}}}+{log_5}7•{log_7}25$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=lnx+ax,若存在x0∈(0,+∞),使f(x0)>0,則a的取值范圍是(-$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示,在邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域.在正方形中隨機撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率為$\frac{2}{3}$,則陰影區(qū)域的面積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c,若向量$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,cos$\frac{C}{2}$),且$\overrightarrow{m}$與$\overrightarrow{n}$的角為$\frac{π}{3}$.
(1)求角C的值;
(2)已知邊$c=\frac{7}{2}$,△ABC的面積$S=\frac{{3\sqrt{3}}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=tan(2x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間是($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C:x2=4y,M為直線l:y=-1上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(1)當(dāng)M的坐標(biāo)為(0,-1)時,求過M,A,B三點的圓的方程;
(2)若P(x0,y0)是C上的任意點,求證:P點處的切線的斜率為$k=\frac{1}{2}{x_0}$;
(3)證明:以AB為直徑的圓恒過點M.

查看答案和解析>>

同步練習(xí)冊答案