14.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且過點(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)若過橢圓左頂點A的直線l與橢圓的另一交點為B.與直線x=a交于點P,求$\overrightarrow{OB}$•$\overrightarrow{OP}$的值.

分析 (Ⅰ)利用已知條件求出b,通過離心率以及a、b、c關系,求出a,即可求橢圓的方程;
(Ⅱ)求出A設出B,得到直線方程,求出P的坐標,計算下來的數(shù)量積,推出結(jié)果即可.

解答 解:(Ⅰ)∵$e=\sqrt{1-\frac{b^2}{a^2}}=\frac{{\sqrt{2}}}{2}$,b=1,∴a2=2,b2=1,∴橢圓的方程為$\frac{x^2}{2}+{y^2}=1$.…(4分)
(Ⅱ)由(1)可知點$A(-\sqrt{2},0)$,設B(x0,y0),則$l:y=\frac{y_0}{{{x_0}+\sqrt{2}}}(x+\sqrt{2})$.…(6分)
令$x=\sqrt{2}$,解得$y=\frac{{2\sqrt{2}{y_0}}}{{{x_0}+\sqrt{2}}}$,即$P(\sqrt{2},\frac{{2\sqrt{2}{y_0}}}{{{x_0}+\sqrt{2}}})$,…(8分)
∴$\overrightarrow{OB}•\overrightarrow{OP}=({x_0},{y_0})•(\sqrt{2},\frac{{2\sqrt{2}{y_0}}}{{{x_0}+\sqrt{2}}})=\frac{{\sqrt{2}({x_0}^2+2{y_0}^2)+2{x_0}}}{{{x_0}+\sqrt{2}}}$,…(10分)
又∵B(x0,y0)在橢圓上,則${x_0}^2+2{y_0}^2=2$,∴$\overrightarrow{OB}•\overrightarrow{OP}=2$.…(12分)

點評 本題考查橢圓的方程的求法,向量在橢圓中的應用,直線與橢圓的位置關系,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知△ABC的內(nèi)角A,B,C的對邊長分別是a,b,c,且2csinC=(2b-a)sinB+(2a-b)sinA.
(1)求角C大。
(2)若c=2,且sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.給出下列四個結(jié)論:
①如果(3x-$\frac{1}{{\root{3}{x^2}}}}$)n的展開式中各項系數(shù)之和為128,則展開式中$\frac{1}{x^3}$的系數(shù)是-21;
②用相關指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),則函數(shù)f(x)的圖象關于x=1對稱;
④已知隨機變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
其中正確結(jié)論的序號為③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在以下所給函數(shù)中,存在極值點的函數(shù)是(  )
A.y=ex+xB.y=lnx-$\frac{1}{x}$C.y=-x3D.y=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.給出命題:p:$\sqrt{2}$>1,q:y=tanx是偶函數(shù),則有三個命題:“p且q”、“p或q”、“非p”中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列不等式中,對任意x∈R都成立的是( 。
A.$\frac{1}{{{x^2}+1}}<1$B.x2+1≥2|x|C.lg(x2+1)≥lg2xD.$\frac{4x}{{{x^2}+4}}$≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設銳角△ABC的外接圓為圓Γ,過點B,C作圓Γ的兩條切線交于點P,鏈接AP與BC交于點D,點E,F(xiàn)分別在邊AC,AB上,使得DE∥BA,DF∥CA.證明:F,B,C,E四點共圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.5個人排成一排,其中甲在中間的排法種數(shù)有( 。
A.5B.120C.24D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②若數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}是等方差數(shù)列;
③{(-1)n}是等方差數(shù)列;
④若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題的個數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案