7.點(diǎn)A(2,1)和點(diǎn)A關(guān)于點(diǎn)$(-\frac{1}{2},\frac{5}{2})$的對(duì)稱點(diǎn)B都在直線3x-2y+a=0的同側(cè),則a的取值范圍是(-∞,-4)∪(17,+∞).

分析 根據(jù)題意,設(shè)B的坐標(biāo)為(m,n),由于A(2,1)和點(diǎn)B關(guān)于點(diǎn)$(-\frac{1}{2},\frac{5}{2})$的對(duì)稱,分析可得m、n的值,即可得B的坐標(biāo),又由A、B都在直線3x-2y+a=0的同側(cè),由
二元一次不等式與平面區(qū)域的關(guān)系,分析可得(3×2-2×1+a)[3×(-3)-2×4+a]>0,解可得a的值,即可得答案.

解答 解:根據(jù)題意,設(shè)B的坐標(biāo)為(m,n),
又由A(2,1)和點(diǎn)B關(guān)于點(diǎn)$(-\frac{1}{2},\frac{5}{2})$的對(duì)稱,則有m+2=-1,1+n=5,
解可得m=-3,n=4,
即B的坐標(biāo)為(-3,4),
又由A、B都在直線3x-2y+a=0的同側(cè),
則有(3×2-2×1+a)[3×(-3)-2×4+a]>0,
即(a+4)(a-17)>0,
解可得a<-4或a>17,
則a的取值范圍是(-∞,-4)∪(17,+∞);
故答案為:(-∞,-4)∪(17,+∞).

點(diǎn)評(píng) 本題考查二元一次不等式與平面區(qū)域的問題,注意由中點(diǎn)坐標(biāo)公式求出B的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)1+2i,a+bi(a、b∈R,i是虛數(shù)單位)滿足(1+2i)(a+bi)=5+5i,則|a+bi|=(  )
A.3$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若用水量x與某種產(chǎn)品的產(chǎn)量y的回歸直線方程是$\stackrel{∧}{y}$=2x+1250,若用水量為  50kg時(shí),預(yù)計(jì)的某種產(chǎn)品的產(chǎn)量是(  )
A.1350 kgB.大于 1350 kgC.小于1350kgD.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),x∈R
(1)求函數(shù)y=f(x)的最小正周期和單調(diào)遞增區(qū)間:
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=2,a=$\sqrt{7}$且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.通過市場調(diào)查,得到某產(chǎn)品的資金投入x(萬元)與獲得的利潤y(萬元)的數(shù)據(jù),如表所示:
資金投入x23456
利潤y23569
(Ⅰ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程${\;}_{y}^{∧}$=bx+a;
(Ⅱ)現(xiàn)投入資金10(萬元),求估計(jì)獲得的利潤為多少萬元.
參考公式:回歸直線的方程是:${\;}_{y}^{∧}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$,其中b=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-${\;}_^{∧}$${\;}_{x}^{-}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列表:
喜愛打籃球不喜愛打籃球合計(jì)
男生20525
女生101525
合計(jì)302050
(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),計(jì)算出K2,你有多大的把握認(rèn)為是否喜歡打藍(lán)球與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
下面的臨界值表供參考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\overrightarrow a=(sinωx,2cosωx),\overrightarrow b=(\sqrt{3}cosωx-sinωx,cosωx)$,其中ω>0,若函數(shù)$f(x)=2\overrightarrow a•\overrightarrow b-1$,且它的最小正周期為2π.
(1)求ω的值,并求出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)$x∈[{m,m+\frac{π}{2}}]$(其中m∈[0,π])時(shí),記函數(shù)f(x)的最大值與最小值分別為f(x)max與f(x)min,設(shè)φ(m)=f(x)max-f(x)min,求函數(shù)φ(m)的解析式;
(3)在第(2)問的前提下,已知函數(shù)g(x)=ln(ex-1+t),$h(x)=x|{x-1}|+2\sqrt{3}$,若對(duì)于任意x1∈[0,π],x2∈(1,+∞),總存在x3∈(0,+∞),使得φ(x1)+g(x2)>h(x3)成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0,0<φ<π),則A,φ,b的值分別為(  )
A.$A=2,φ=\frac{π}{4},b=1$B.$A=\sqrt{2},φ=\frac{π}{6},b=2$C.$A=\sqrt{2},φ=\frac{π}{6},b=1$D.$A=\sqrt{2},φ=\frac{π}{4},b=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖是某社區(qū)的部分規(guī)劃設(shè)計(jì)圖,住宅區(qū)一邊的邊界曲線記為C,步行街(寬度不計(jì))所在直線L與曲線C相切于點(diǎn)M,以點(diǎn)E為圓心,1百米為半徑的圓的四分之一為大型超市,為方便住宅區(qū)居民購物休閑,該社區(qū)計(jì)劃在步行街與大型超市之間鋪設(shè)一條連接道路AB(寬度不計(jì))以及修建花園廣場.
根據(jù)相關(guān)數(shù)據(jù),某同學(xué)建立了平面直角坐標(biāo)系xOy,曲線C用函數(shù)模型y=ex-1+kx+b(k,b為常數(shù))擬合.并求得直線l:y=2x,M(1,2),E(2$\sqrt{5}$,0),單位:百米.點(diǎn)A在l上,點(diǎn)B在$\widehat{FG}$上
(1)求曲線C的方程和AB的最短距離;
(2)若過點(diǎn)A作AP垂直于x軸,垂足為P,在空地△APB內(nèi)截取一個(gè)面積最大的矩形,用來修建一個(gè)花園廣場.要求矩形的一邊在AB上.在連接道路AB最短時(shí),求花園廣場的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案