16.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0,0<φ<π),則A,φ,b的值分別為(  )
A.$A=2,φ=\frac{π}{4},b=1$B.$A=\sqrt{2},φ=\frac{π}{6},b=2$C.$A=\sqrt{2},φ=\frac{π}{6},b=1$D.$A=\sqrt{2},φ=\frac{π}{4},b=1$

分析 利用三角恒等變換化簡等式的坐標(biāo),從而比較系數(shù)求得A,φ,b的值.

解答 解:∵2cos2x+sin2x=Asin(ωx+φ)+b(A>0,0<φ<π),∴cos2x+sin2x+1=Asin(ωx+φ)+b,
即 $\sqrt{2}$sin(2x+$\frac{π}{4}$)+1=Asin(ωx+φ)+b,∴A=$\sqrt{2}$,ω=2,φ=$\frac{π}{4}$,b=1,
故選:A.

點評 本題主要考查三角恒等變換,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若直線(2a2-7a+3)x+(a2-9)y+3a2=0的傾斜角為45°,則實數(shù)a=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.點A(2,1)和點A關(guān)于點$(-\frac{1}{2},\frac{5}{2})$的對稱點B都在直線3x-2y+a=0的同側(cè),則a的取值范圍是(-∞,-4)∪(17,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在側(cè)棱長和底面邊長均為2的正三棱柱ABC-A1B1C1中,點M、N、P分別在AA1、BC、BB1上運動,且AM=CN=B1P=X(0<X<2).記三棱錐P-MNB1的體積為,V(X)則函數(shù)Y=V(X)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.近年來我國電子商務(wù)行業(yè)迎來篷勃發(fā)展的新機遇,2016年雙11期間,某購物平臺的銷售業(yè)績高達一千多億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(Ⅰ)請完成如下列聯(lián)表;
對服務(wù)好評對服務(wù)不滿意合計
對 商品 好評
對商品不滿意
合    計
(Ⅱ)是否可以在犯錯誤的概率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(Ⅲ)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=e-x-$\frac{1}{1+x}$.
(Ⅰ)證明:當(dāng)x∈[0,3]時,${e^{-x}}≥\frac{1}{1+9x}$.
(Ⅱ)證明:當(dāng)x∈[2,3]時,$-\frac{2}{7}<f(x)<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)在(0,+∞)上是減函數(shù)的是(  )
A.f(x)=lnxB.f(x)=e-xC.$f(x)=\sqrt{x}$D.$f(x)=-\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,樣本數(shù)為9的三組數(shù)據(jù),它們的平均數(shù)都是5,頻率條形圖如下,則標(biāo)準(zhǔn)差最大的一組是圖3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖都是邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第n個幾何體的表面積是3n(n+1)個平方單位.

查看答案和解析>>

同步練習(xí)冊答案