17.復數(shù)$\frac{2}{i(3-i)}$=(  )
A.$\frac{1-3i}{5}$B.$\frac{1+3i}{5}$C.$\frac{3+i}{5}$D.$\frac{3-i}{5}$

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:$\frac{2}{i(3-i)}$=$\frac{2}{3i-{i}^{2}}=\frac{2}{1+3i}=\frac{2(1-3i)}{(1+3i)(1-3i)}=\frac{2-6i}{10}$=$\frac{1-3i}{5}$.
故選:A.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知點A,B分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左,右頂點,點P(0,-2),直線BP交E于點Q,$\overrightarrow{PQ}=\frac{3}{2}\overrightarrow{QB}$且△ABP是等腰直角三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過點P的動直線l與E相交于M,N兩點,當坐標原點O位于以MN為直徑的圓外時,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)數(shù)列{an}為等差數(shù)列,Sn為其前n項和,若S1≤13,S4≥10,S5≤15,則a4的最大值為( 。
A.3B.4C.-7D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={1,2,3,4},集合B={x|x2-2x<0},則集合A∩B中元素的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在四棱錐P-ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=3,PA=$\sqrt{11}$,AC∩BD=O.
(1)設(shè)平面ABP∩平面DCP=l,證明:l∥AB;
(2)若E是PA的中點,求三棱錐P-BCE的體積VP-BCE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知正項數(shù)列{an}的前n項和為Sn,且$\frac{{a}_{n}+1}{6}$=$\frac{{S}_{n}+n}{{S}_{n+1}-{S}_{n}+1}$,a1=m,現(xiàn)有如下說法:
①a2=5;
②當n為奇數(shù)時,an=3n+m-3;
③a2+a4+…+a2n=3n2+2n.
則上述說法正確的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題“?n∈N,f(n)∉N且f(n)≤n”的否定形式是( 。
A.?n∈N,f(n)∈N且f(n)>nB.?n0∈N,f(n0)∈N且f(n0)>n0
C.?n∈N,f(n)∈N或f(n)>nD.?n0∈N,f(n0)∈N或f(n0)>n0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(-1,2),那么向量$\overrightarrow{a}$與$\overrightarrow$夾角余弦值是$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.用區(qū)間表示下列集合:{x!x≤4},{x|x≤4且x≠0},{x|x≤4且x≠0,x≠-1},{x|x≤0或x>2}.

查看答案和解析>>

同步練習冊答案