1.已知△ABC中,b=2,B=45°,C=105°,則a=( 。
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\sqrt{3}$-1D.$\sqrt{3}$

分析 由已知及正弦定理可求a的值.

解答 解:∵△ABC中,b=2,B=45°,C=105°,可得:A=180°-B-C=30°,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}$,可得:a=$\frac{b•sinA}{sinB}$=$\frac{2×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題p:?x0∈R,x02+(a-1)x0+1<0,命題q:?x∈R,x2+ax+1≥0,p∨(¬q)為假命題,則實(shí)數(shù)a的取值范圍是( 。
A.[-2,-1]B.(-1,3)C.(-2,-1)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4:2:1.若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間[45,75)內(nèi)的產(chǎn)品件數(shù)為X,則X數(shù)學(xué)期望為1.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.把函數(shù)y=sin x(x∈R)的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變),再把所得圖象上所有點(diǎn)向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,得到圖象的函數(shù)解析式為( 。
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)若關(guān)于x的不等式|x-3|+|x+2|≤|2a+1|的解集不是空集,試求a的取值范圍;
(2)已知關(guān)于x的不等式|x-a|≤4的解集為[-1,7],且兩正數(shù)s和t滿足2s+t=a,求證:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若x,y滿足$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y-2≥0\end{array}\right.$,則z=x+2y的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.將3個(gè)不同的小球放入4個(gè)盒子中,有64種不同的放法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1)
(I)當(dāng)a=e時(shí),求函數(shù)y=f(x)在x=1處的切線方程;
(Ⅱ)若函數(shù)f(x)只有一個(gè)零點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若隨機(jī)變量η的分布列如下:
η-2-10123
P0.10.20.20.30.10.1
則當(dāng)P(η<x)=0.9時(shí),實(shí)數(shù)x的取值范圍是( 。
A.x≤3B.2≤x≤3C.2<x≤3D.2<x<3

查看答案和解析>>

同步練習(xí)冊(cè)答案