16.已知函數(shù)f(x)=-$\sqrt{\frac{1}{{x}^{2}}+4}$(x>0),在數(shù)列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$=-f(an),n∈N*,設(shè)bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$,數(shù)列{bn}的前n項和為Tn,則T20=2.

分析 由題意可得:$\frac{1}{{a}_{n+1}}$=-f(an)=$\sqrt{\frac{1}{{a}_{n}^{2}}+4}$,化為$\frac{1}{{a}_{n+1}^{2}}$-$\frac{1}{{a}_{n}^{2}}$=4,利用等差數(shù)列的通項公式可得:$\frac{1}{{a}_{n}^{2}}$=4n-3,an>0,可得:$\frac{1}{{a}_{n}}$=$\sqrt{4n-3}$.于是bn=$\frac{1}{\frac{1}{{a}_{n+1}}+\frac{1}{{a}_{n}}}$=$\frac{1}{\sqrt{4n-3}+\sqrt{4n+1}}$=$\frac{\sqrt{4n+1}-\sqrt{4n-3}}{4}$,利用“裂項求和”方法即可得出.

解答 解:由題意可得:$\frac{1}{{a}_{n+1}}$=-f(an)=$\sqrt{\frac{1}{{a}_{n}^{2}}+4}$,化為$\frac{1}{{a}_{n+1}^{2}}$-$\frac{1}{{a}_{n}^{2}}$=4,
∴數(shù)列$\{\frac{1}{{a}_{n}^{2}}\}$是等差數(shù)列,首項為1,公差為4.
∴$\frac{1}{{a}_{n}^{2}}$=1+4(n-1)=4n-3,
an>0,
∴$\frac{1}{{a}_{n}}$=$\sqrt{4n-3}$.
∴bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$=$\frac{1}{\frac{1}{{a}_{n+1}}+\frac{1}{{a}_{n}}}$=$\frac{1}{\sqrt{4n-3}+\sqrt{4n+1}}$=$\frac{\sqrt{4n+1}-\sqrt{4n-3}}{4}$,
∴數(shù)列{bn}的前n項和為Tn=$\frac{1}{4}[(\sqrt{5}-1)+(\sqrt{9}-\sqrt{5})$+…+$(\sqrt{4n+1}-\sqrt{4n-3})]$=$\frac{1}{4}(\sqrt{4n+1}-1)$.
則T20=$\frac{1}{4}(\sqrt{81}-1)$=2.
故答案為:2.

點評 本題考查了等差數(shù)列的通項公式、遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F1,P為左支上一點,|PF1|=a,P0與P關(guān)于原點對稱,且$\overrightarrow{{P}_{0}{F}_{1}}$$•\overrightarrow{P{F}_{1}}$=0.則雙曲線的漸近線方程為( 。
A.y=±xB.y=$±\frac{\sqrt{6}}{2}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
①某地2015年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如圖,則這組數(shù)據(jù)的中位數(shù)為20;
②函數(shù)f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2${\;}^{\frac{1}{8}}$)>f(log2$\frac{1}{8}$)>f[($\frac{1}{8}$)2]
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3,
其中正確命題的序號是①②(把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線方程為x2-$\frac{{y}^{2}}{4}$=1,過點P(1,1)的直線l與雙曲線只有一個公共點,則l的條數(shù)共有(  )
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)集合A={1,2,3,4,5},M={x|x∈A},試解答下列問題.
(1)求集合M的子集的個數(shù);
(2)若集合N滿足{4,5}?N⊆M,求集合N;
(3)若S⊆M,且S中至多含有兩個偶數(shù),求滿足條件的集合S的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知各項均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),若a2014=a2016,則a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知α,β為銳角,且cos(α+β)=$\frac{3}{5}$,sinα=$\frac{5}{13}$,則cosβ的值為( 。
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$\frac{16}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a,b,c分別為角A,B,C的對邊,已知tanA+tanB-$\sqrt{3}$tanAtanB=-$\sqrt{3}$,c=$\frac{7}{2}$又△ABC的面積為S=$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,曲線C1,C2的參數(shù)方程分別為$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t為參數(shù))和$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).
(1)將曲線C1,C2的參數(shù)方程化為普通方程,并指出是何種曲線;
(2)以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C1,C2的交點所確定的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案