15.下列命題中,真命題是(  )
A.存在x∈R,ex≤0B.a+b=0的充要條件是$\frac{a}$=-1
C.任意x∈R,2x>x2D.a>1,b>1是ab>1的充分條件

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)判斷A、C,由分母不是0判斷B,根據(jù)不等式的性質(zhì)判斷D.

解答 解:?x∈R,ex>0,故A錯誤;
b=0時,$\frac{a}$無意義,故B錯誤;
x=2時,2x=x2,故C錯誤;
由a>1,b>1,得ab>1,
故a>1,b>1是ab>1的充分條件,故D正確.
故選:D.

點評 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a=2ln3,b=2lg2,c=($\frac{1}{4}$)${\;}^{lo{g}_{\frac{1}{3}}\frac{1}{2}}$,則( 。
A.c>a>bB.a>b>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-1≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,則z=2x+3y點的最大值是13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)全集U=R,集合A={y|y=x2+1},B={x|x≤-1或x≥3},則A∩(∁UB)=(  )
A.{x|x≤-1}B.{x|x≤1}C.{x|-1<x≤1}D.{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知A={x||3x-4|>2},$B=\left\{{\left.x\right|\frac{1}{{{x^2}-x-2}}>0}\right\}$,C={x|(x-a)(x-a-1)≥0},p:x∈∁RA,q:x∈∁RB,r:x∈C
(1)p是q的什么條件?
(2)若r是p的必要非充分條件,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|-|x-3|.
(1)若a=-1,解不等式f(x)≥2;
(2)若存在實數(shù)x,使得$f(x)≤-\frac{a}{2}$成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè){an}是遞增等差數(shù)列,前三項的和為12,前三項的積為48,則它的首項是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率是$\frac{{\sqrt{2}}}{2}$,上頂點B是拋物線x2=4y的焦點.
(1)求橢圓M的標準方程;
(2)若P、Q是橢圓M上的兩個動點,且OP⊥OQ(O是坐標原點),試問:點到直線的距離是否為定值?若是,試求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),則($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow$-2$\overrightarrow{a}$)=( 。
A.-2B.-1C.1D.0

查看答案和解析>>

同步練習冊答案