4.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最大值為5.

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.

解答 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過點(diǎn)A時(shí),
直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{x-1=0}\\{x+y-3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即A(1,2),
此時(shí)z的最大值為z=1+2×2=5,
故答案為:5

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在三棱錐P-ABC中,PA=PB=PC=6,側(cè)棱PA與底面ABC所成的角為60°,則該三棱錐外接球的表面積為( 。
A.12πB.24πC.36πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若命題p:?x∈(0,+∞),x+$\frac{1}{x}$≥1,命題q:?x0∈R,x${\;}_{0}^{2}$-x0+1≤0,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.(¬p)∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知復(fù)數(shù)z滿足3z+$\overline{z}$=8+6i (其中i為虛數(shù)單位),則復(fù)數(shù)z=2+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x+2y-4≥0}\end{array}\right.$,則z=x+3y的最大值為10..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若A,B,C形成等差數(shù)列.
(1)求cosB的值;
(2)若b=$\sqrt{7}$,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等差數(shù)列{an}中,a4=9,a7=3a2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{a{{\;}_{n}a}_{n+1}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在區(qū)間 (0,+∞)上單調(diào)遞減的是( 。
A.y=$\frac{1}{x}$B.y=e-xC.y=-x2+1D.y═lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知sin(30°+α)=$\frac{4}{5}$,60°<α<150°,則cosα=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

同步練習(xí)冊答案