分析 設(shè)z=a+bi(a,b∈R),則$\overline{z}=a-bi$,代入3z+$\overline{z}$=8+6i,利用復(fù)數(shù)相等的條件列式求得a,b的值,則復(fù)數(shù)z可求.
解答 解:設(shè)z=a+bi(a,b∈R),則$\overline{z}=a-bi$,
由3z+$\overline{z}$=8+6i,得3(a+bi)+a-bi=8+6i,
即4a+2bi=8+6i.
∴$\left\{\begin{array}{l}{4a=8}\\{2b=6}\end{array}\right.$,即a=2,b=3.
∴z=2+3i.
故答案為:2+3i.
點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | $±\frac{\sqrt{2}}{4}$ | C. | $±\sqrt{2}$ | D. | $±\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 至少有1個紅球,都是紅球 | B. | 恰有1個紅球,恰有1個白球 | ||
C. | 至少有1個紅球,都是白球 | D. | 恰有1個白球,恰有2個白球 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{3}$ln$\frac{4}{3}$] | B. | [$\frac{1}{3}$ln$\frac{4}{3}$,+∞) | C. | (-∞,0] | D. | (-∞,$\frac{1}{3}$ln$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com