18.若函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$在區(qū)間(m,2m+1)上是單調遞增函數(shù),則實數(shù)m的取值范圍為( 。
A.(-1,0]B.(-1,0)C.[0,1]D.(0,1]

分析 根據(jù)題意,對函數(shù)f(x)求導,可得f′(x)=$\frac{4(1-{x}^{2})}{({x}^{2}+1)}$,令f′(x)≥0,解可得函數(shù)f(x)的單調遞增區(qū)間,而由條件函數(shù)f(x)在區(qū)間(m,2m+1)上單調遞增便可得出關于m的不等式組,從而求出實數(shù)m的取值范圍.

解答 解:根據(jù)題意,函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$,
其導數(shù)f′(x)=$\frac{(4x)′({x}^{2}+1)-(4x)({x}^{2}+1)′}{({x}^{2}+1)^{2}}$=$\frac{4(1-{x}^{2})}{({x}^{2}+1)}$,
若f′(x)≥0,即$\frac{4(1-{x}^{2})}{({x}^{2}+1)}$≥0,解可得-1≤x≤1;
即區(qū)間[-1,1]是f(x)的單調遞增區(qū)間;
若函數(shù)f(x)在區(qū)間(m,2m+1)上是單調遞增函數(shù),
則有$\left\{\begin{array}{l}{m≥-1}\\{2m+1≤1}\\{m<2m+1}\end{array}\right.$,解可得-1<m≤0,
即m的取值范圍為(-1,0];
故選:A.

點評 本題考查利用導數(shù)求函數(shù)單調區(qū)間的方法,一元二次不等式的解法,關鍵是求出函數(shù)f(x)的遞增區(qū)間.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.“直線與拋物線相切”是“直線與拋物線只有一個公共點”的( 。l件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調函數(shù).如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調函數(shù),那么實數(shù)m的取值范圍是m≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在復平面內(nèi),復數(shù)z=$\frac{i}{1+2i}$的共軛復數(shù)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設函數(shù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則x•f(x)<0的解集是( 。
A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知復數(shù)z=$\frac{3i+1}{1-i}$,則z的虛部是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設f(x),g(x)是定義域為R的恒大于零的可導函數(shù),且 f'(x)•g(x)-f(x)g'(x)<0,則當b<x<a時有( 。
A.f(x)•g(x)>f(a)•g(a)B.f(x)•g(a)>f(a)•g(x)C.f(x)•g(b)>f(b)•g(x)D.f(x)•g(x)>f(b)•g(b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列說法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.{an}為等比數(shù)列,則“a1<a2<a3”是“a4<a5”的既不充分也不必要條件
C.若a,b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件
D.“$tanα≠\sqrt{3}$”必要不充分條件是“$α≠\frac{π}{3}$”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)=|x+1|.
(1)求不等式f(x+2)+f(2x)≥4的解集;
(2)若|m|>1,|n|>1,求證:$\frac{f(mn)}{|m|}$>f($\frac{n}{m}$)

查看答案和解析>>

同步練習冊答案