8.已知F1,F(xiàn)2分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0,a≠b)$的左右焦點(diǎn),P為雙曲線右支上異于頂點(diǎn)的任一點(diǎn),O為坐標(biāo)原點(diǎn),則下列說(shuō)法正確的是(  )
A.△PF1F2的內(nèi)切圓圓心在直線$x=\frac{a}{2}$上B.△PF1F2的內(nèi)切圓圓心在直線x=b上
C.△PF1F2的內(nèi)切圓圓心在直線OP上D.△PF1F2的內(nèi)切圓經(jīng)過(guò)點(diǎn)(a,0)

分析 設(shè)△PF1F2的內(nèi)切圓分別與PF1、PF2切于點(diǎn)A、B,與F1F2切于點(diǎn)M,則可知|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,點(diǎn)P在雙曲線右支上,根據(jù)雙曲線的定義可得|PF1|-|PF2|=2a,因此|F1M|-|F2M|=2a,設(shè)M點(diǎn)坐標(biāo)為(x,0),代入即可求得x,可得結(jié)論.

解答 解:設(shè)△PF1F2的內(nèi)切圓分別與PF1、PF2切于點(diǎn)A、B,與F1F2切于點(diǎn)M,
則|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,
又點(diǎn)P在雙曲線右支上,
所以|PF1|-|PF2|=2a,故|F1M|-|F2M|=2a,而|F1M|+|F2M|=2c,
設(shè)M點(diǎn)坐標(biāo)為(x,0),
則由|F1M|-|F2M|=2a可得(x+c)-(c-x)=2a
解得x=a,顯然內(nèi)切圓的圓心與點(diǎn)M的連線垂直于x軸,
故選D.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).特別是靈活利用了雙曲線的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-m,0),B(m,0)(m>0).若圓上存在點(diǎn)P使得$\overrightarrow{PA}•\overrightarrow{PB}=0$,則m的取值范圍是( 。
A.(-∞,4]B.(6,+∞)C.(4,6)D.[4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知變量x,y滿足約束任務(wù)$\left\{\begin{array}{l}{x+y-5≤0}\\{x-2y+1≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知:
$1+2+3+…+n=\frac{n(n+1)}{2}$;
$1×2+2×3+…+n(n+1)=\frac{n(n+1)(n+2)}{3}$;
$1×2×3+2×3×4+…+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$,
利用上述結(jié)果,計(jì)算:13+23+33+…+n3=$\frac{{{n^2}{{(n+1)}^2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)?shù)列{an}的前n項(xiàng)和${S_n}=A{n^2}+Bn+q(A≠0)$,則q=0是{an}為等差數(shù)列的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=8,an=3Sn-1+8(n≥2)
(1)記bn=log2an,求數(shù)列{bn}的通項(xiàng)公式;
(2)在(1)成立的條件下,設(shè)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若在($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n的展開(kāi)式中,第3項(xiàng)為常數(shù)項(xiàng),且含x項(xiàng)的系數(shù)為a,則直線y=$\frac{a}{4}$x與曲線y=x2所圍成的封閉區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)$(ω>0,|φ|<\frac{π}{2})$在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)=Asin(ωx+φ)050-50
(1)請(qǐng)將如表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱中心.
(3)求當(dāng)$x∈[-\frac{π}{4},\frac{π}{4}]$時(shí),函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在平行四邊形ABCD中,AD=2,∠BAD=60°,E為CD的中點(diǎn).若$\overrightarrow{AC}•\overrightarrow{BE}$=3,則AB的長(zhǎng)為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案