2.$\frac{1-tan17°tan28°}{tan17°+tan28°}$等于( 。
A.-1B.1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 根據(jù)正切的和與差的公式求解即可.

解答 解:由tan45°=tan(17°+28°)=$\frac{tan17°+tan28°}{1-tan17°tan18°}$,
∴$\frac{1-tan17°tan28°}{tan17°+tan28°}$=$\frac{1}{tan45°}=1$.
故選B

點評 本題考查了正切的和與差的公式的運用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,其定義域和值域與函數(shù)y=elnx的定義域和值域相同的是( 。
A.y=xB.y=lnxC.y=$\frac{1}{\sqrt{x}}$D.y=10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知一組數(shù)據(jù)(2,3),(4,6),(6,9),(x0,y0)的線性回歸方程為$\stackrel{∧}{y}$=x+2,則x0-y0的值為( 。
A.2B.4C.-4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.三棱錐A-BCD中,AB,AC,AD兩兩垂直,其外接球半徑為2,設(shè)三棱錐A-BCD的側(cè)面積為S,則S的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等比數(shù)列{an}中,3a5-a3a7=0,若數(shù)列{bn}為等差數(shù)列,且b5=a5,則{bn}的前9項的和S9為( 。
A.24B.25C.27D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=1,nan-1=(n-1)an(n≥2,n∈N*),數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,對任意n∈N*都有bn+12=bn+1bn+2
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…+anbn.求證:$\frac{1}{2}≤{T_n}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在銳角△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A+$\sqrt{3}$sin(B+C)=1.
(Ⅰ)求角A的大。
(Ⅱ)若△ABC的面積S=10$\sqrt{3}$,c=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系中,已知點F(1,0),直線l:x=-1,動直線l′垂直l于點H,線段HF的垂直平分線交l′于點P,設(shè)點P的軌跡為C.
(1)求曲線C的方程;
(2)以曲線C上的點P(x0,y0)(y0>0)為切點作曲線C的切線l1,設(shè)l1分別與x,y軸交于A,B兩點,且l1恰與以定點M(a,0)(a>2)為圓心的圓相切,當(dāng)圓M的面積最小時,求△ABF與△PAM面積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點P的極坐標(biāo)為($\sqrt{3}$,$\frac{π}{2}$).
(1)求點P的直角坐標(biāo),并求曲線C的普通方程;
(2)設(shè)直線l與曲線C的兩個交點為A,B,求|PA|+|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案