15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),A,B為雙曲線的左右頂點(diǎn),若點(diǎn)M在雙曲線上,且滿足△ABM為一個(gè)頂角為120°的等腰三角形,則雙曲線的漸近線方程是(  )
A.y=±xB.y=±$\sqrt{2}$xC.y=±2xD.y=±$\frac{\sqrt{2}}{2}$x

分析 由題意畫出圖形,過點(diǎn)M作MN⊥x軸,得到Rt△BNM,通過求解直角三角形得到M坐標(biāo),代入雙曲線方程可得a與b的關(guān)系,結(jié)合a,b,c的關(guān)系,求出a=b.即可得到漸近線方程.

解答 解:根據(jù)題意,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
如圖所示,|AB|=|BM|,∠ABM=120°,
過點(diǎn)M作MN⊥x軸,垂足為N,則∠MBN=60°,
在Rt△BMN中,|BM|=|AB|=2a,∠MBN=60°,
即有|BN|=2acos60°=a,|MN|=2asin60°=$\sqrt{3}$a,
故點(diǎn)M的坐標(biāo)為M(2a,$\sqrt{3}$a);
將點(diǎn)M的坐標(biāo)代入雙曲線方程可得:$\frac{4{a}^{2}}{{a}^{2}}$-$\frac{3{a}^{2}}{^{2}}$=1,
化簡(jiǎn)可得:a2=b2
即雙曲線的方程為:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{a}^{2}}$=1,
其雙曲線的漸近線方程為::y=±x;
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),涉及直線與雙曲線的位置關(guān)系,關(guān)鍵是求出點(diǎn)M的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a4=7且4Sn=n(an+an+1),則S10等于(  )
A.90B.100C.110D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2+(a2+b2-9)x+a+b+ab為偶函數(shù),則函數(shù)的圖象與y軸交點(diǎn)的縱坐標(biāo)的最大值與最小值的和為3$\sqrt{2}$-$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三個(gè)數(shù)sin20°,cos40°,tan50°的大小關(guān)系是( 。
A.sin20°<cos40°<tan50°B.cos40°<sin20°<tan50°
C.tan50°<cos40°<sin20°D.sin20°<tan50°<cos40°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a=${∫}_{-1}^{1}$(1+$\sqrt{1-{x}^{2}}$)dx,則((a-$\frac{π}{2}$)x-$\frac{3}{x}$)9展開式中的各項(xiàng)系數(shù)和為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若O為△ABC所在平面內(nèi)任一點(diǎn),且滿足($\overrightarrow{OB}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)=0,則△ABC的形狀為(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為得到函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)長(zhǎng)度單位B.向左平移$\frac{π}{6}$個(gè)長(zhǎng)度單位
C.向左平移$\frac{π}{12}$個(gè)長(zhǎng)度單位D.向右平移$\frac{π}{12}$個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.13B.11C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,一個(gè)正六角星薄片(其對(duì)稱軸與水平面垂直)勻速地升長(zhǎng)水面,直到全部露出水面為止,記時(shí)刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導(dǎo)函數(shù)y=S'(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案