14.已知函數(shù)f(x)=$\frac{lnx+1}{x}$,g(x)=x2-(a+1)x
(1)求函數(shù)f(x)的最大值;
(2)當(dāng)a≥0時(shí),討論函數(shù)h(x)=$\frac{1}{2}{x^2}$+a-axf(x)與函數(shù)g(x)的圖象的交點(diǎn)個(gè)數(shù).

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;
(2)問題等價(jià)于求函數(shù)F(x)=h(x)-g(x)的零點(diǎn)個(gè)數(shù),通過討論a的范圍判斷即可.

解答 解:(1)$f'(x)=\frac{-lnx}{x^2}$,由f'(x)=0⇒x=1,列表如下:

x(0,1)1(1,+∞)
f'(x)+0-
f(x)單調(diào)遞增極大值1單調(diào)遞減
因此增區(qū)間(0,1),減區(qū)間(1,+∞),極大值f(1)=1,無極小值.故函數(shù)f(x)的最大值為1
(2)令$F(x)=h(x)-g(x)=\frac{1}{2}{x^2}+a-axf(x)-g(x)=-\frac{1}{2}{x^2}+(a+1)x-alnx,x>0$,
問題等價(jià)于求函數(shù)F(x)的零點(diǎn)個(gè)數(shù),
①當(dāng)a=0時(shí),F(xiàn)(x)=-$\frac{1}{2}$x2+x,x>0,F(xiàn)(x)有唯一零點(diǎn);
當(dāng)a≠0時(shí),F(xiàn)′(x)=-$\frac{(x-1)(x-a)}{x}$,
②當(dāng)a=1時(shí),F(xiàn)′(x)≤0,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
所以F(x)為減函數(shù).注意到F(1)=$\frac{3}{2}$>0,F(xiàn)(4)=-ln4<0,
所以F(x)在(1,4)內(nèi)有唯一零點(diǎn);
③當(dāng)a>1時(shí),當(dāng)0<x<1,或x>a時(shí),F(xiàn)′(x)<0,1<x<a時(shí),F(xiàn)′(x)>0,
所以F(x)在(0,1)和(a,+∞)上單調(diào)遞減,在(1,a)上單調(diào)遞增,
注意到F(1)=a+$\frac{1}{2}$>0,F(xiàn)(2a+2)=-aln(2a+2)<0,
所以F(x)在(1,2a+2)內(nèi)有唯一零點(diǎn);
④當(dāng)0<a<1時(shí),0<x<a,或x>1時(shí),F(xiàn)′(x)<0,0<x<1時(shí),F(xiàn)′(x)>0,
所以F(x)在(0,a)和(1,+∞)上單調(diào)遞減,在(a,1)上單調(diào)遞增,
注意到F(1)=a+$\frac{1}{2}$>0,F(xiàn)(a)=$\frac{a}{2}$(a+2-2lna)>0,F(xiàn)(2a+2)=-aln(2a+2)<0,
所以F(x)在(1,2a+2)內(nèi)有唯一零點(diǎn),
綜上,F(xiàn)(x)有唯一零點(diǎn),即函數(shù)f(x)與g(x)的圖象有且僅有一個(gè)交點(diǎn).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,考查函數(shù)的零點(diǎn)問題,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在銳角三角形△ABC中,a,b,c分別是角A,B,C的對(duì)邊,${a^2}+{c^2}-{b^2}=\sqrt{3}bc$,則cosA+sinC的取值范圍為( 。
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)F(-c,0)(c>0)作圓x2+y2=$\frac{a^2}{4}$的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P.且滿足$\overrightarrow{OP}=\overrightarrow{FE}+\overrightarrow{OE}$,則雙曲線的漸近線方程為(  )
A.$\sqrt{10}$x±2y=0B.2x±$\sqrt{10}$y=0C.$\sqrt{6}$x±2y=0D.2x±$\sqrt{6}$y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α,β,γ為不同的平面,m,n為不同的直線,則m⊥β的一個(gè)充分條件是( 。
A.α∩γ=m,α⊥γ,β⊥γB.α⊥β,β⊥γ,m⊥αC.α⊥β,α∩β=n,m⊥nD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x|},}&{x≤\frac{1}{2}}\\{\sqrt{2}|lo{g}_{2}x|,}&{x>\frac{1}{2}}\end{array}\right.$,方程f(x)-c=0有四個(gè)根,則實(shí)數(shù)c的取值范圍是( 。
A.[1,$\sqrt{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)和上頂點(diǎn)分別為A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2,在線段AB上有且只有一個(gè)點(diǎn)P滿足PF1⊥PF2,則橢圓的離心率為( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ y≥a\end{array}\right.$,目標(biāo)函數(shù)z=3x-2y的最小值為-4,則z的最大值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.假設(shè)你家訂了一份牛奶,送奶人在早上6:30~7:30之間隨機(jī)地把牛奶送到你家,而你在早上7:00~8:00之間隨機(jī)離家上學(xué),則你在離家前能收到牛奶的概率是( 。
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為推行“新課堂”教學(xué)法,某數(shù)學(xué)老師分別用原傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖.記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,數(shù)學(xué)分?jǐn)?shù)前十的平均分;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計(jì)
成績(jī)優(yōu)良
成績(jī)不優(yōu)良
總計(jì)
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
獨(dú)立性檢驗(yàn)臨界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

同步練習(xí)冊(cè)答案