3.定義在R上的連續(xù)函數(shù)f(x)滿足f(1)=2,且f(x)在R上的導(dǎo)函數(shù)f′(x)<1,則不等式f(x)<x+1的解集為{x|x>1}.

分析 令F(x)=f(x)-x,求出函數(shù)的導(dǎo)數(shù),不等式轉(zhuǎn)化為F(x)<F(1),求出不等式的解集即可.

解答 解:令F(x)=f(x)-x,則F′(x)=f′(x)-1<0,
故F(x)在R遞減,而F(1)=f(1)-1=1,
故f(x)<x+1即F(x)<1=F(1),
解得:x>1,
故不等式的解集是{x|x>1},
故答案為:{x|x>1}.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)F(x)=f(x)-x是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求角B的值;
(2)若a+c=6,且△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求邊b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果方程$\frac{x^2}{m^2}+\frac{y^2}{m+2}=1$表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)m的取值范圍是( 。
A.(2,+∞)B.(-∞,-1)C.(-∞,-1)∪(2,∞)D.(-2,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$($\overrightarrow a$+$\overrightarrow b$)=5,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控非微信控合計(jì)
男性262450
女性302050
合計(jì)5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機(jī)抽取3 人贈送200 元的護(hù)膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)點(diǎn)A,B的坐標(biāo)分別為(-6,0),(6,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是$\frac{4}{9}$,則動點(diǎn)M的軌跡加上A,B兩點(diǎn)所表示的曲線是(  )
A.B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cos(π-α)=-$\frac{\sqrt{3}}{3}$,則cosα=(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知P為拋物線y2=8x上一點(diǎn),F(xiàn)為該拋物線焦點(diǎn),若A點(diǎn)坐標(biāo)為(3,2),則|PA|+|PF|最小值為( 。
A.$\sqrt{5}$B.5C.7D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.有一拋物線形拱橋,正常情況下,拱頂離水面2m,水面寬4m,干旱的情況下,水面下降1m,此時水面寬為$2\sqrt{6}$m.

查看答案和解析>>

同步練習(xí)冊答案