4.如圖P為平行四邊形ABCD所在平面外一點,Q為PA的中點,O為AC與BD的交點,下面說法錯誤的是( 。 
A.OQ∥平面PCDB.PC∥平面BDQC.AQ∥平面PCDD.CD∥平面PAB

分析 由線面平行的判定定理,判定A,B,D正確,即可得出結論.

解答 解∵O為平行四邊形ABCD對角線的交點,∴AO=OC,又Q為PA的中點,∴QO∥PC.
由線面平行的判定定理,可知A、B正確,又ABCD為平行四邊形,∴AB∥CD,故CD∥面PAB,故D正確.
故選C.

點評 本題考查線面平行的判定定理,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.在等比數(shù)列{an}中,a1=1,a4=8,則a7=( 。
A.64B.32C.16D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知i為虛數(shù)單位,則復數(shù)$\frac{1+i}{2i}$=( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知不等式|2x-3|<x與不等式x2-mx+n<0的解集相同.
(Ⅰ)求m-n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m-n,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知圓的方程(x-2)2+y2=1,過圓外一點P(3,4)作一條直線與圓交于A,B兩點,那么$\overrightarrow{PA}•\overrightarrow{PB}$=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知△ABC是等腰直角三角形,AC=BC=2,則$\overrightarrow{AB}•\overrightarrow{BC}$=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,過點F1且垂直于x軸的直線被橢圓截得的弦長為2,直線l:y=kx+m與橢圓交于不同的A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q滿足:$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OQ}$(O為坐標原點),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在下列條件中:①b2-4ac≥0;②ac>0;③ab<0且ac>0;④b2-4ac≥0,$\frac{a}<0,\frac{c}{a}$>0中能成為“使二次方程ax2+bx+c=0的兩根為正數(shù)”的必要非充分條件是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=3cos(x+100)+5sin(x+40°)的最大值是7.

查看答案和解析>>

同步練習冊答案