14.由曲線y=x2+1、直線y=-x+3,x軸與y軸所圍成圖形的面積為(  )
A.3B.$\frac{10}{3}$C.$\frac{7}{3}$D.$\frac{8}{3}$

分析 求出交點(diǎn)坐標(biāo),利用定積分知識(shí),即可求解.

解答 解:曲線y=x2+1、直線y=-x+3聯(lián)立可得x2+x-2=0,∴x=-2或1,
∴由曲線y=x2+1、直線y=-x+3,x軸與y軸所圍成圖形的面積為${∫}_{0}^{1}({x}^{2}+1)dx$+$\frac{1}{2}×2×2$=$(\frac{1}{3}{x}^{3}+x){|}_{0}^{1}$+2=$\frac{10}{3}$,
故選B.

點(diǎn)評(píng) 本題考查了利用定積分求曲邊梯形的面積,關(guān)鍵是利用定積分表示出面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求函數(shù)f(x)=x2+x在區(qū)間[x0,x0+△x]上的平均變化率,并求當(dāng)x0=1,△x=0.1時(shí)的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,AD為BC邊上的高,已知∠BAC=$\frac{3π}{4}$,AC=1,AD=$\frac{BC}{6}$,則AB+$\frac{1}{AB}$的值為( 。
A.2B.2$\sqrt{2}$C.3D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足$2{a_n}={2^{n+1}}+2{a_{n-1}},({n≥2,n∈{N^*}})$,且a1=3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_n}+1}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(-c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率${e_1}∈({\frac{3}{5},\frac{2}{3}})$,則雙曲線的離心率e2的范圍是( 。
A.$({\frac{3}{2},\frac{5}{3}})$B.$({\frac{5}{3},2})$C.(2,3)D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.$\frac{cos10°(1+\sqrt{3}tan10°)}{cos50°}$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ln(1+x)}{x}$.
(1)試判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并說(shuō)明理由;
(2)若函數(shù)f(x)在其定義域內(nèi)恒有f(x)<$\frac{1-ax}{1+x}$成立,試求a的所有可能的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.我國(guó)南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積為“三斜公式”,設(shè)△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,面積為S,則“三斜求積”公式為:S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-^{2}}{2})]}$,若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓W:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0)的一個(gè)焦點(diǎn)坐標(biāo)為$(\sqrt{3},0)$.
(Ⅰ)求橢圓W的方程和離心率;
(Ⅱ)若橢圓W與y軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的上方),M是橢圓上異于A,B的任意一點(diǎn),過(guò)點(diǎn)M作MN⊥y軸于N,E為線段MN的中點(diǎn),直線AE與直線y=-1交于點(diǎn)C,G為線段BC的中點(diǎn),O為坐標(biāo)原點(diǎn).求∠OEG的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案