20.設(shè)f(x)=(x+1)ln(x+1).
(1)求f(x)的最小值;
(2)若對任意的x≥0,都有f(x)≥ax成立,求實數(shù)a的取值范圍.

分析 (1)由已知得x>-1,f′(x)=ln(x+1)+1,x∈(-1,$\frac{1}{e}$-1)時,f′(x)<0;當(dāng)x∈($\frac{1}{e}-1$,+∞)時,f′(x)>0.由此求出x=$\frac{1}{e}$-1時,[f(x)]min=f($\frac{1}{e}-1$),由此能求出結(jié)果.
(2)令g(x)=(x+1)ln(x+1)-ax,對函數(shù)g(x)求導(dǎo)數(shù):g′(x)=ln(x+1)+1-a令g′(x)=0,得x=ea-1-1,由此根據(jù)a≤1,a>1進(jìn)行分類討論,利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.

解答 解:(1)∵f(x)=(x+1)ln(x+1),
∴x+1>0,解得x>-1,
f′(x)=ln(x+1)+1,
令f′(x)=0,得x+1=$\frac{1}{e}$,即x=$\frac{1}{e}-1$,
當(dāng)x∈(-1,$\frac{1}{e}$-1)時,f′(x)<0;當(dāng)x∈($\frac{1}{e}-1$,+∞)時,f′(x)>0.
∴x=$\frac{1}{e}$-1時,[f(x)]min=f($\frac{1}{e}-1$)=$\frac{1}{e}ln(\frac{1}{e})$=-$\frac{1}{e}$.
(2)令g(x)=(x+1)ln(x+1)-ax,
對函數(shù)g(x)求導(dǎo)數(shù):g′(x)=ln(x+1)+1-a
令g′(x)=0,解得x=ea-1-1,
(i)當(dāng)a≤1時,對所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函數(shù),
又g(0)=0,所以對x≥0,都有g(shù)(x)≥g(0),
即當(dāng)a≤1時,對于所有x≥0,都有f(x)≥ax.
(ii)當(dāng)a>1時,對于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是減函數(shù),
又g(0)=0,所以對0<x<ea-1-1,都有g(shù)(x)<g(0),
即當(dāng)a>1時,不是對所有的x≥0,都有f(x)≥ax成立.
綜上,a的取值范圍是(-∞,1].

點評 本題考查函數(shù)的最小值的求法,考查實數(shù)的取值范圍的求法,考查導(dǎo)數(shù)的性質(zhì)的應(yīng)用,考查推理論證能力、運算求解能力,考查轉(zhuǎn)化化歸思想、分類討論思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.正方形ABCD與等邊三角形BCE有公共邊BC,若∠ABE=120°,則BE與平面ABCD所成角的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=sinωx(ω>0),若函數(shù)y=f(x+a)(a>0)的部分圖象如圖所示,則ω=2,a的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.我國科研人員屠呦呦發(fā)現(xiàn)從青篙中提取的青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(1)寫出第一次服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于$\frac{1}{9}$微克時,治療有效,求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.兩曲線$y=\sqrt{x}$,y=x2在x∈[0,1]內(nèi)圍成的圖形面積是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點F是拋物線y2=4x的焦點,M,N是該拋物線上兩點,|MF|+|NF|=6,則 MN中點的橫坐標(biāo)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距為$4\sqrt{2}$,短半軸長為2,過點P(-2,1)斜率為1的直線l與橢圓C交于A,B點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與圓${C_2}:{x^2}+{y^2}={c^2}$(c是雙曲線的半焦距)相交于第一象限內(nèi)一點P,又F1,F(xiàn)2分別是雙曲線C1的左、右焦點,若$∠P{F_2}{F_1}=\frac{π}{3}$,則雙曲線的離心率為$\sqrt{3}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》,活動共有四關(guān),設(shè)男生闖過一至四關(guān)的概率依次是$\frac{5}{6},\frac{4}{5},\frac{3}{4},\frac{2}{3}$,女生闖過一至四關(guān)的概率依次是$\frac{4}{5},\frac{3}{4},\frac{2}{3},\frac{1}{2}$.
(1)求男生闖過四關(guān)的概率;
(2)設(shè)ε表示四人沖關(guān)小組闖過四關(guān)的人數(shù),求隨機(jī)變量?的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案