分析 設(shè)點O是正三角形ACD的中心,連接OB,作EF⊥AO,垂足為點F.AO交CD于點M,則點M為CD的中點.設(shè)AE=λAB(0<λ<1).$AO=\frac{2}{3}$AM,AM=$\frac{\sqrt{3}}{2}$,BO=$\sqrt{A{B}^{2}-A{O}^{2}}$.由EF∥BO,可得EF=λBO=$\frac{\sqrt{6}}{3}$λ=a.同理可得:b=EN=$\frac{\sqrt{6}}{3}$(1-λ).代入利用基本不等式的性質(zhì)即可得出.
解答 解:如圖所示,
設(shè)點O是正三角形ACD的中心,連接OB,作EF⊥AO,垂足為點F.AO交CD于點M,則點M為CD的中點.
設(shè)AE=λAB(0<λ<1).
$AO=\frac{2}{3}$AM=$\frac{2}{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$,
∴BO=$\sqrt{A{B}^{2}-A{O}^{2}}$=$\frac{\sqrt{6}}{3}$.
∵EF∥BO,
∴EF=λBO=$\frac{\sqrt{6}}{3}$λ=a.
同理可得:b=EN=$\frac{\sqrt{6}}{3}$(1-λ).
∴$\frac{1}{a}+\frac{1}$=$\frac{3}{\sqrt{6}}$$(\frac{1}{λ}+\frac{1}{1-λ})$=$\frac{\sqrt{6}}{2}$×$\frac{1}{λ(1-λ)}$≥$\frac{\sqrt{6}}{2}×\frac{1}{(\frac{λ+1-λ}{2})^{2}}$=2$\sqrt{6}$,當(dāng)且僅當(dāng)$λ=\frac{1}{2}$時取等號.
故答案為:2$\sqrt{6}$.
點評 本題考查了正四面體的性質(zhì)、等邊三角形的性質(zhì)、平行線的性質(zhì)定理、勾股定理、基本不等式的性質(zhì),考查了空間想象能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)的最大值為2 | B. | g(x)在[0,$\frac{π}{2}$]上是增函數(shù) | ||
C. | 函數(shù)g(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱 | D. | 函數(shù)g(x)的圖象關(guān)于點($\frac{π}{12}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com